

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

SOFTWARE DEFINED RADIO DESIGN
FOR AN IEEE 802.11A TRANSCEIVER

USING OPEN SOURCE SOFTWARE COMMUNICATIONS
ARCHITECTURE (SCA)

IMPLEMENTATION::EMBEDDED (OSSIE)

by

Leong Wai Kiat Chris

December 2006

Thesis Advisor: Frank Kragh
Thesis 2nd Reader: R. Clark Robertson

THIS PAGE INTENTIONALLY LEFT BLANK

i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for
reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and
reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
December 2006

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE:
Software Defined Radio design for An IEEE 802.11a Transceiver using Open Source
Software Communications Architecture (SCA) Implementation::Embedded (OSSIE)

6. AUTHOR(S) Leong Wai Kiat Chris

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
 In this thesis, we present the design of a software defined radio (SDR) transceiver using Open Source
SCA Implementation::Embedded (OSSIE) as the software platform. Designing a SDR requires both an
appreciation of the IEEE 802.11a (wireless Local Area Network at 5 GHz band) protocol standard as
well as the understanding of the C++ and CORBA software tools available to implement the physical
transmitter and receiver layers. For this work, the Incremental Development Model was chosen, which
is comprised of three stages: Design, Develop and Verify. The advantage of this model is its
incremental nature, which allows the developer to learn from earlier versions of the system.
Implementing the IEEE 802.11a physical layer using OSSIE requires a total of 23 components, 12
different functionalities and 31 sequential input-output (I/O) processes for the transmitter, while the
receiver is implemented with 18 components, 12 different functionalities and 20 sequential I/O
processes. The completed transmitter and receiver layers are validated successfully according to test
cases stipulated in the IEEE standard.

15. NUMBER OF
PAGES

138

14. SUBJECT TERMS
Software Defined Radio, IEEE 802.11a, wireless Local Area Network, Open Source SCA
Implementation::Embedded (OSSIE), C++, CORBA

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

ii

THIS PAGE INTENTIONALLY LEFT BLANK

iii

Approved for public release; distribution is unlimited.

SOFTWARE DEFINED RADIO DESIGN
FOR AN IEEE 802.11A TRANSCEIVER USING

OPEN SOURCE SOFTWARE COMMUNICATIONS ARCHITECTURE (SCA)
IMPLEMENTATION::EMBEDDED (OSSIE)

Leong Wai Kiat Chris
Major, Republic of Singapore Air Force

B.Eng, National University of Singapore, 1999
M.Tech, National University of Singapore, 2003

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL

December 2006

Author: Leong Wai Kiat Chris

Approved by: Assistant Professor Frank Kragh

Thesis Advisor

Professor R. Clark Robertson
Thesis 2nd Reader

Professor Jeffrey B. Knorr
Chairman, Electrical and Computer Engineering Department

iv

THIS PAGE INTENTIONALLY LEFT BLANK

v

ABSTRACT

In this thesis, we present the design of a software defined radio (SDR) transceiver

using Open Source Software Communications Architecture (SCA)

Implementation::Embedded (OSSIE) as the software platform. Designing a SDR requires

both an appreciation of the IEEE 802.11a (wireless Local Area Network at 5 GHz band)

protocol standard as well as the understanding of the C++ and CORBA software tools

available to implement the physical transmitter and receiver layers. For this work, the

Incremental Development Model was chosen, which is comprised of three stages:

Design, Develop and Verify. The advantage of this model is its incremental nature, which

allows the developer to learn from earlier versions of the system. Implementing the IEEE

802.11a physical layer using OSSIE requires a total of 23 components, 12 different

functionalities and 31 sequential input-output (I/O) processes for the transmitter, while

the receiver is implemented with 18 components, 12 different functionalities and 20

sequential I/O processes. The completed transmitter and receiver layers are validated

successfully according to test cases stipulated in the IEEE standard.

vi

THIS PAGE INTENTIONALLY LEFT BLANK

vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. OBJECTIVES ..1
B. GUIDING PRINCIPLES ..1

1. Start Small ..1
2. Think Modular...2
3. Help is Out There...2

C. INCREMENTAL DEVELOPMENT MODEL...3
1. Design ..4
2. Develop..5
3. Verify...5

D. THESIS CHAPTERS BREAKDOWN ..5

II. DESIGN ..7
A. REQUIREMENTS ANALYSIS ...7

1. Software Defined Radio...7
2. IEEE 802.11a PHY Layer ...8
3. OSSIE Platform ...9

B. CONCEPTUAL DESIGN ...10
1. MATLAB OFDM Models ...11

a. BPSK Modulation / Demodulation Transceiver11
b. QPSK Modulation / Demodulation Transceiver....................12
c. OFDM Transceiver ..13

2. OSSIE Tx-Rx OFDM Model...14
C. DETAILED DESIGN: OSSIE IEEE 802.11A TRANSCEIVER

MODEL ..15
1. Transmitter...15
2. Receiver...20

III. DEVELOP: TRANSMITTER ..25
A. PREAMBLE...25

1. Tx1: Preamble Mapping (Assembly Controller)26
2. Tx1.1.9: Carriers Mapping (ST)...27
3. Tx1.1.10: IFFT (ST)...28
4. Tx1.2.9: Carriers Mapping (LT) ..28
5. Tx1.2.10: IFFT (LT) ..29
6. Tx1.2.11: Cyclic Prefix (LT) ...29

B. SIGNAL ..30
1. Tx2: SIGNAL Mapping...31
2. Tx2.6: Convolutional Encoder (SIG) ...32
3. Tx2.7: Interleaver (SIG)..33
4. Tx2.8: BPSK Modulation (SIG) ...34
5. Tx2.9: Carriers Mapping (SIG)..34
6. Tx2.10: IFFT (SIG)..35
7. Tx2.11: Cyclic Prefix (SIG)...35

viii

C. DATA ..36
1. Tx3: DATA Mapping...37
2. Tx3.4: Scrambler (DATA)...39
3. Tx3.5: Tail Replacement (DATA) ..39
4. Tx3.6: Convolutional Encoder (DATA)...40
5. Tx3.7: Interleaver (DATA) ...41
6. Tx3.8: Modulation Mapping (DATA)..42
7. Tx3.9: Carriers Mapping (DATA) ...43
8. Tx3.10: IFFT (DATA) ...44
9. Tx3.11: Cyclic Prefix (DATA) ..44

D. PPDU (FINAL CONCATENATION)..45
1. Tx12: PPDU Mapping ...45

IV. DEVELOP: RECEIVER...47
A. PREAMBLE...47

1. Rx0: Receiver Data (Assembly Controller)47
2. Rx1: PPDU Receiver..48

B. SIGNAL ..49
1. Rx2: SIGNAL Receiver ...49
2. Rx2.11: Cyclic Prefix Removal (SIG)...50
3. Rx2.10: FFT (SIG) ...51
4. Rx2.9: Carriers Demapper (SIG) ...51
5. Rx2.8: BPSK Demodulator (SIG)...52
6. Rx2.7: De-Interleaver (SIG)..52
7. Rx2.6: Convolutional Decoder (SIG) ...53

C. DATA ..54
1. Rx3: DATA Receiver ...54
2. Rx3.11: Cyclic Prefix Removal (DATA) ..55
3. Rx3.10: FFT (DATA)...56
4. Rx3.9: Carriers Demapper (DATA)...56
5. Rx3.8: Demodulation Mapper (DATA) ...57
6. Rx3.7: De-Interleaver (DATA) ...58
7. Rx3.6: Convolutional Decoder (DATA)...58
8. Rx3.5: Tail Replacement (DATA) ..60
9. Rx3.4: Descrambler (DATA) ..60

V. CHALLENGES..61
A. SPECIAL INTEREST COMPONENTS ...61

1. IFFT / FFT..61
a. Real to Complex Conversion ..63
b. Bit Reversal ...64
c. DIT PINO DFT...64

2. Viterbi Decoder ..65
a. Initialise_viterbi()..65
b. Process_viterbi()..66
c. BUTTERFLY_viterbi() ...67

B. OTHER CHALLENGES ..68
1. Data Synchronisation (Ports Management)68

ix

2. MIMO Components...68
3. Control Variables...69

VI. VERIFY ..71
A. TRANSMITTER..71

1. Preamble ...71
a. Tx1: Preamble Mapping (Assembly Controller)....................71
b. Tx1.1.9: Carriers Mapping (ST)...72
c. Tx1.1.10: IFFT (ST) ...72
d. Tx1.2.9: Carriers Mapping (LT)...73
e. Tx1.2.10: IFFT (LT)...73
f. Tx1.2.11: Cyclic Prefix (LT)...73

2. SIGNAL ..74
a. Tx2: SIGNAL Mapping ..74
b. Tx2.6: Convolutional Encoder (SIG).....................................74
c. Tx2.7: Interleaver (SIG) ...75
d. Tx2.8: BPSK Modulation (SIG) ...75
e. Tx2.9: Carriers Mapping (SIG)..75
f. Tx2.10: IFFT (SIG) ..75
g. Tx2.11: Cyclic Prefix (SIG) ..76

3. Data ...76
a. Tx3: DATA Mapping ..77
b. Tx3.4: Scrambler (DATA) ..77
c. Tx3.5: Tail Replacement (DATA) ..77
d. Tx3.6: Convolutional Encoder (DATA).................................78
e. Tx3.7: Interleaver (DATA) ...78
f. Tx3.8: Modulation Mapping (DATA)78
g. Tx3.9: Carriers Mapping (DATA)..79
h. Tx3.10: IFFT (DATA) ..79
i. Tx3.11: Cyclic Prefix (DATA)..80

4. PPDU (Final Concatenation) ..80
a. Tx12: PPDU Mapping ..80

B. RECEIVER ..81
1. Preamble ...81

a. Rx0: Receiver Data (Assembly Controller)81
b. Rx1: PPDU Receiver...81

2. SIGNAL ..82
a. Rx2: SIGNAL Receiver...82
b. Rx2.11: Cyclic Prefix Removal (SIG)83
c. Rx2.10: FFT (SIG) ...83
d. Rx2.9: Carriers Demapper (SIG) ...83
e. Rx2.8: BPSK Demodulator (SIG) ..84
f. Rx2.7: De-Interleaver (SIG) ...84
g. Rx2.6: Convolutional Decoder (SIG).....................................84

3. Data ...85
a. Rx3: DATA Receiver...85
b. Rx3.11: Cyclic Prefix Removal (DATA)86

x

c. Rx3.10: FFT (DATA) ...86
d. Rx3.9: Carriers Demapper (DATA)86
e. Rx3.8: Demodulation Mapper (DATA)..................................87
f. Rx3.7: De-Interleaver (DATA)...87
g. Rx3.6: Convolutional Decoder (DATA).................................87
h. Rx3.4: Descrambler (DATA) ..88

VII. CONCLUSION ..89
A. SUMMARY ..89
B. RECOMMENDATIONS...90

APPENDIX A: IEEE 802.11A COMPONENTS PORT TYPES.......................................93
A. TRANSMITTER..93
B. RECEIVER ..94

APPENDIX B: GLOBAL PARAMETERS...95

APPENDIX C: SUMMARIZED TRACE ...97
A. TRANSMITTER..97
B. RECEIVER ..105

APPENDIX D: IEEE 802.11A TEST SEQUENTIAL FLOW CHART109
A. TRANSMITTER..109
B. RECEIVER ..111

LIST OF REFERENCES..113

INITIAL DISTRIBUTION LIST...115

xi

LIST OF FIGURES

Figure 1. Incremental Development Model. ...4
Figure 2. Model of Software Defined Radio. ..7
Figure 3. PPDU frame format (from: reference [3], Fig 107). ..9
Figure 4. Incremental conceptual design...11
Figure 5. MATLAB BPSK transceiver model. ...11
Figure 6. MATLAB QPSK transceiver model. ...12
Figure 7. MATLAB OFDM transceiver model...13
Figure 8. IEEE 802.11a Transmitter components flow diagram.....................................15
Figure 9. IEEE 802.11a Transmitter subframes flow diagram..17
Figure 10. IEEE 802.11a Receiver components flow diagram. ..20
Figure 11. IEEE 802.11a Receiver subframes flow diagram. ...22
Figure 12. PPDU frame structure and timing. (from: reference [3], Fig. 110).25
Figure 13. preamble_map port and functional flow..26
Figure 14. ST_carriers_map port and functional flow..27
Figure 15. ST_IFFT port and functional flow. ..28
Figure 16. LT_carriers_map port and functional flow..29
Figure 17. LT_IFFT port and functional flow...29
Figure 18. LT_ cyclicPrefix port and functional flow. ..30
Figure 19. SIGNAL_map port and functional flow. ..31
Figure 20. composition of SIGNAL field (from: reference [3], Fig. 111).32
Figure 21. convolutional encoder (7ν =) (from: reference [3], Fig. 114).32
Figure 22. SIG_conv_enc port and functional flow. ...33
Figure 23. SIG_interleaver port and functional flow. ...34
Figure 24. SIG_BPSK_mod port and functional flow. ..34
Figure 25. SIG_carriers_map port and functional flow..35
Figure 26. SIG_IFFT port and functional flow. ..35
Figure 27. SIG_cyclicPrefix port and functional flow. ...36
Figure 28. Composition of SERVICE field (from: reference [3], Fig. 112).36
Figure 29. DATA_map port and functional flow...37
Figure 30. DATA scrambler (from: reference [3], Fig. 113). ...39
Figure 31. DATA_ scrambler port and functional flow...39
Figure 32. DATA_ tail_replacement port and functional flow..40
Figure 33. DATA_conv_enc puncturing patterns (after: reference [3], Fig. 115).41
Figure 34. DATA_conv_enc port and functional flow...41
Figure 35. DATA_interleaver port and functional flow. ...42
Figure 36. Constellation modulation mapping (after: reference [3], Table 82 to 85).43
Figure 37. DATA_mod_map port and functional flow. ...43
Figure 38. DATA_carriers_map port and functional flow. ...44
Figure 39. DATA_IFFT port and functional flow. ..44
Figure 40. DATA_cyclicPrefix port and functional flow...45
Figure 41. PPDU_map port and functional flow. ...46
Figure 42. Rx_data port and functional flow. ...48
Figure 43. PPDU_rx port and functional flow..48

xii

Figure 44. SIGNAL_rx port and functional flow...50
Figure 45. SIG_cyclicPrefix_rem port and functional flow. ...50
Figure 46. SIG_FFT port and functional flow. ...51
Figure 47. SIG_carriers_demap port and functional flow. ...51
Figure 48. SIG_BPSK demod port and functional flow. ...52
Figure 49. SIG_deinterleaver port and functional flow. ...53
Figure 50. SIG_conv_dec port and functional flow. ...53
Figure 51. DATA_map port and functional flow...55
Figure 52. DATA_cyclicPrefix_rem port and functional flow. ...55
Figure 53. DATA_FFT port and functional flow...56
Figure 54. DATA_carriers_demap port and functional flow. ...56
Figure 55. Constellation demodulation mapping. ...57
Figure 56. DATA_demod_map port and functional flow. ...57
Figure 57. DATA_deinterleaver port and functional flow. ...58
Figure 58. DATA_conv_dec puncturing patterns. ...59
Figure 59. DATA_conv_dec port and functional flow...59
Figure 60. DATA scrambler..60
Figure 61. DATA_descrambler port and functional flow..60
Figure 62. OFDM transmission system: transmitter and receiver.....................................62
Figure 63. DATA_IFFT and DATA_FFT functional flows. ..63
Figure 64. A sample signal flow graph of a DIT PINO FFT. ...63
Figure 65. An example of Viterbi decoder: DATA_conv_dec functional flow.65
Figure 66. initialise_viterbi() functional flow...66
Figure 67. process_viterbi() functional flow...67
Figure 68. BUTTERFLY_viterbi() functional flow. ..67
Figure 69. PPDU_map MIMO and control functional flow. ..69
Figure 70. Transmission of dynamic control variables. ..69

xiii

LIST OF TABLES

Table 1. MATLAB BPSK transceiver components description.12
Table 2. MATLAB QPSK transceiver components description....................................12
Table 3. MATLAB OFDM transceiver components description.13
Table 4. OSSIE OFDM model additional components..14
Table 5. IEEE 802.11a Transmitter components functionalities.19
Table 6. IEEE 802.11a Receiver components functionalities..24
Table 7. IEEE 802.11a Transmitter preamble subframe components functionalities. ..26
Table 8. IEEE 802.11a Transmitter SIGNAL subframe components functionalities....30
Table 9. Rate-dependent parameters: 6 Mbits/s...31
Table 10. IEEE 802.11a Transmitter DATA subframe components functionalities.37
Table 11. Rate-dependent parameters. ...38
Table 12. Normalization factor (after: reference [3], Table 81).42
Table 13. IEEE 802.11a Receiver preamble subframe components functionalities.47
Table 14. IEEE 802.11a Receiver SIGNAL subframe components functionalities.49
Table 15. Rate-dependent parameters: 6 Mbits/s...50
Table 16. IEEE 802.11a Receiver DATA subframe components functionalities............54
Table 17. Rate-dependent parameters. ...54
Table 18. Viterbi decoding lookup matrix. ..66
Table 19. IEEE 802.11a Transmitter preamble subframe components functionalities. ..71
Table 20. preamble_map detail traces and explanations. ..72
Table 21. ST_carriers_map detail traces and explanations. ..72
Table 22. ST_IFFT detail traces and explanations...72
Table 23. LT_carriers_map detail traces and explanations. ..73
Table 24. LT_IFFT detail traces and explanations. ...73
Table 25. LT_cyclicPrefix detail traces and explanations..73
Table 26. IEEE 802.11a Transmitter SIGNAL subframe components functionalities....74
Table 27. SIGNAL_map detail traces and explanations. ..74
Table 28. SIG_conv_enc detail traces and explanations. ...74
Table 29. SIG_interleaver detail traces and explanations..75
Table 30. SIG_BPSK_mod detail traces and explanations...75
Table 31. SIG_carriers_map detail traces and explanations. ..75
Table 32. SIG_IFFT detail traces and explanations...76
Table 33. SIG_cyclicPrefix detail traces and explanations. ...76
Table 34. IEEE 802.11a Transmitter DATA subframe components functionalities.76
Table 35. DATA_map detail traces and explanations. ...77
Table 36. DATA_scrambler detail traces and explanations. ..77
Table 37. DATA_tail_replacement detail traces and explanations.78
Table 38. DATA_conv_enc detail traces and explanations. ...78
Table 39. DATA_interleaver detail traces and explanations..78
Table 40. DATA_mod_map detail traces and explanations..79
Table 41. DATA_carriers_map detail traces and explanations..79
Table 42. DATA_IFFT detail traces and explanations. ..79
Table 43. DATA_cyclicPrefix detail traces and explanations. ...80

xiv

Table 44. PPDU_map detail traces and explanations..80
Table 45. IEEE 802.11a Receiver preamble subframe components functionalities.81
Table 46. Rx_data detail traces and explanations. ...81
Table 47. PPDU_rx detail traces and explanations. ..82
Table 48. IEEE 802.11a Receiver SIGNAL subframe components functionalities.82
Table 49. SIGNAL_rx detail traces and explanations. ...83
Table 50. SIG_cyclicPrefix_rem detail traces and explanations......................................83
Table 51. SIG_FFT detail traces and explanations. ...83
Table 52. SIG_carriers_demap detail traces and explanations..84
Table 53. SIG_BPSK_demod detail traces and explanations. ..84
Table 54. SIG_deinterleaver detail traces and explanations..84
Table 55. SIG_conv_dec detail traces and explanations. ...85
Table 56. IEEE 802.11a Receiver DATA subframe components functionalities............85
Table 57. DATA_rx detail traces and explanations. ...85
Table 58. DATA_cyclicPrefix_rem detail traces and explanations.86
Table 59. DATA_FFT detail traces and explanations. ...86
Table 60. DATA_carriers_demap detail traces and explanations....................................86
Table 61. DATA_demod_map detail traces and explanations..87
Table 62. DATA_deinterleaver detail traces and explanations.87
Table 63. DATA_conv_dec detail traces and explanations. ...87
Table 64. DATA_descrambler detail traces and explanations. ..88

xv

ACKNOWLEDGMENTS

I would like to express my gratitude to Assistant Professor Frank Kragh and

Professor R. Clark Robertson for their professional advice, guidance and assistance in

making this thesis a possibility in such a short time. Their patience in me is greatly

appreciated. I am also grateful for my organization, the Republic of Singapore Air Force,

for giving me this opportunity to study at the Naval Postgraduate School and carry out

this interesting thesis work. This one-year experience has definitely enriched my

knowledge in my professional and technical fields.

xvi

THIS PAGE INTENTIONALLY LEFT BLANK

xvii

EXECUTIVE SUMMARY

Reed defines a software defined radio (SDR) as a radio that can be “substantially

defined in software and whose physical layer behavior can be significantly altered

through changes to its software”1. SDR has distinct military advantages over

conventional radio as it promotes multi-functionality, mobility, compactness, flexibility,

ease of manufacture and ease of upgrades.

A military unit will not always know in advance what communications

capabilities it will need in operations. This is especially true in coalition operations,

where the coalition partner’s forces may not have the preferred radio equipment.

Therefore, in operations, it is imperative to be prepared for many different means of

communications, especially those that a coalition partner would be likely to possess.

Radio equipment built to commercial (i.e., IEEE wireless) standards is just such a likely

means of communications. SDR with the software to communicate in many modes,

including commercial standards, would be a substantial advantage to a military unit that

is part of a coalition operation, when time and foresight may not be sufficient for the

fielding of communications equipment ideally suited for the specific coalition

membership. For this research, the focus is on software design for the commercial

standard IEEE 802.11a implemented on a SDR.

In this thesis research, the transceiver components shall be implemented using

software radio techniques. The components will be designed for use in an IEEE 802.11a

transceiver and for contribution to the library of components being developed. The

1 J. H. Reed, “Software Radio: A Modern Approach to Radio Engineering”, 1st ed. New Jersey:

Prentice Hall, 2002.

xviii

components developed shall be flexible so that they can be modified to implement other

receivers by customizing the appropriate parameters. Design of the SDR shall use the

Software Communications Architecture (SCA) including Common Object Request

Broker Architecture (CORBA) as dictated for the Joint Tactical Radio System (JTRS).

The components shall be tested based on functions and test cases found in the IEEE

802.11a standard.

For the transmitter, all functionalities from the input binary data to the digitized

input to the Digital-to-Analog Converter (DAC) will be implemented in software.

Similarly for the receiver, all functionalities after the Analog-to-Digital Converter (ADC)

to the regeneration of the binary received information will be implemented in this thesis

work. It is important to note that all software components are implemented at base band,

i.e., before up-conversion at the transmitter and after down-conversion at the receiver.

Following the principle of iterative and incremental development, five models

have been developed, with each being more complex and built on the experiences

gathered from the previous. The first three are exploratory models using MATLAB,

which are relatively easy to build since many of the radio functionalities are already

available as function calls. The fourth model builds on the success of the MATLAB

design. It emulates a Transmitter-Receiver (Tx-Rx) design using Open Source SCA

Implementation::Embedded (OSSIE) but following closely the previous MATLAB

model. The final model is the full scale OSSIE implementation of IEEE 802.11a PHY

layer, which is the primary objective of this thesis work.

xix

In this thesis, we have successfully met the following objectives:

1. The IEEE 802.11a PHY layer transmitter has been built using a total of 23

OSSIE components with 12 different functionalities and 31 sequential I/O processes.

Correspondingly, the receiver is implemented using 18 components with 12 different

functionalities and 20 sequential I/O processes.

2. All these components have been designed with modularity and flexibility in

mind so that they contribute to the pool of components for future radio design.

“Readme” files are also included in each component’s directory to explain its I/O data

types, functionalities and assumptions. Appropriate parameters can be modified easily for

use in other transceivers. All the files mentioned in this research have been included in

the reference CD.

3. With the design implemented fully in the OSSIE waveform development

environment, the SDR conforms to Software Communications Architecture (SCA) and

the Common Object Request Broker Architecture (CORBA). This will ensure flexibility,

performance and maximum potential for software module reuse.

4. Using the test cases provided in Annex G of the IEEE 802.11a standard

document, all the components have been verified to provide the necessary functionalities

expected of them.

The software components developed here shall serve as a baseline to link up with

other software or hardware components to implement a fully functional IEEE 802.11a

transceiver. This functionality then can be added to any SDR that includes the minimum

hardware functionality, (i.e. bandwidth, frequency band, sample rates, signal processing

complexity) and conforms to the design standards specified by the JTRS JPEO in the

xx

SCA, thereby providing that radio user one more mode of communications which extends

readiness to include perhaps unanticipated communications demands.

1

I. INTRODUCTION

A. OBJECTIVES

In designing the software-defined radio (SDR), the following objectives have

been identified:

1. Design and implement transceiver components using soft radio techniques.

The components will be designed for use in an IEEE 802.11a transceiver and for

contribution to the library of components being developed.

2. The components developed shall be flexible so that they can be modified to

implement other receivers by customizing the appropriate parameters.

3. Design of the SDR shall use the Software Communications Architecture (SCA)

including Common Object Request Broker Architecture (CORBA) for flexibility,

performance and maximum potential for software module reuse.

4. The components shall be tested based on functions and test cases found in the

IEEE 802.11a standard.

B. GUIDING PRINCIPLES

Designing a SDR requires both the appreciation of the protocol standard as well

as the understanding of the software tools available to implement the physical transmitter

and receiver layers (layer 1 under the OSI 7 layers model). In order to implement the

coding effectively and efficiently within the limited amount of time, it is important that

the whole research should be conducted with a set of guiding principles in mind. The

following three are single out as critical factors guiding the research that has been carried

out.

1. Start Small

Implementing the 802.11a physical layer using Open Source Software

Communications Architecture (SCA) Implementation::Embedded (OSSIE) requires a

total of 23 components, 12 different functionalities and 31 sequential input-output (I/O)

processes for the transmitter, while the receiver is implemented with 18 components, 12

different functionalities and 20 sequential I/O processes. It would be a daunting task to

2

jump straight into the coding of a full-scale IEEE 802.11a standard as it is extremely

complex and would probably result in a demoralizing outcome.

Hence, the strategy is to ‘start small’ by first developing simple components that

work. This will help to build up confidence and experience in using the OSSIE software,

which is still a trial version. This assimilation time is needed to understand the

programming language and flow. An Incremental Development Model has been chosen

for the software implementation as it advocates the need to be modular and provides

constant feedback in the design cycle to minimize back tracing. It minimizes major bugs

from occurring in the design further downstream in the implementation. More details on

the model are provided in the next section.

2. Think Modular

As this research is more of a discovery venture (since it is the first time an attempt

has been made to use OSSIE to implement IEEE 802.11a standards), the push for a direct

working design outweighs the need for an efficient one. Hence, it is more important to

get the various components under the standard to carry out their necessary functions,

even though the code may not be written as efficiently as desired. If there is a need,

future efforts can be recommended to optimize the code and integrate it with other

aspects of the standards or hardware. These further enhancements are proposed in the

concluding chapter.

The targets to be modular and reusable reinforce the need to keep the components

‘simple’ so that they can be understood and modified easily for future enhancement.

While the OSSIE waveform developer already provides handy tools to modify

components, it is critical to have good programming discipline in managing the

complexity of the software algorithm. This prevents the code from getting too exclusive

and losing the flexibility of customization.

3. Help is Out There

As mentioned before, OSSIE is still under development and refinement. It is very

important that one is kept up to date regarding the OSSIE software development to fully

3

utilize its capabilities. Through the research, we have been fortunate to have constant

dialogue and guidance from the OSSIE development team at the Virginia Polytechnic

Institute and State University (Virginia Tech).

The algorithm, functions and objects in the software are written in the C++

programming language. However, it is equally important to appreciate the underlying

CORBA interfaces that enable input/output (I/O) interaction between components and

integration of the transmitter and receiver waveforms. Another challenge will be to

understand the IEEE 802.11a communication standard (e.g. modulation, error

corrections, orthogonal frequency division multiplexing) and convert that into the desired

algorithms in the C++ programming language.

To fully understand the various technical details and challenges on one’s own is

nearly impossible in such a short time. It has been important to seek assistance quickly

whenever the implementation reached an obstacle. Proven algorithms and approaches are

referenced so as not to reinvent the wheel. This research is also a collaboration with

Major Low Kian Wai, who was working on the IEEE 802.16 implementation using

OSSIE. Various useful resources include literature studies, Internet research, sample C++

software algorithms, MATLAB simulation for IEEE 802.11a standard, etc. All of these

resources come disjointed but they provide guidance and the tools to complete the thesis

research.

C. INCREMENTAL DEVELOPMENT MODEL

The intent of this model is to develop a software system incrementally, allowing

the developer to take advantage of what has been learned in earlier versions of the

system. The process starts with a simple implementation of a subset of the software

requirements and iteratively enhances the evolving versions until the full system is

implemented. At each iteration, design modifications are introduced and new functional

capabilities are included [1]. The incremental development model has three stages:

Design, Develop and Verify. Figure 1 describes the interrelationship between these three

stages as a model and how it corresponds to processes in the software waveform

development of the IEEE 802.11a standard.

4

Define outline
requirement

Assign
requirement to

increment

Design system
architecture

Develop system
increment

Validate
increment

Integrate
increment

Validate & verify
system

Completed
system

Model Process

User
requirement

Waveform
(new / exisitng)

Design &
model

s/w designed?

Build waveform
(compile / new fn) Reuse

Test waveform Debug

Waveform
perform

correctly?

Test waveform
on system (s/w,

h/w)
Debug

Verify
requriement?

No

Yes

No

Yes

No

Yes

Design

Develop

Verify

Figure 1. Incremental Development Model.2

1. Design

This stage starts with defining the outline software requirements and assigning

these requirements to the specific increment. From these requirements, the system

architecture is designed to serve as a framework for actual software development in the

next stage.

2 Eric Christensen, Elisa Wing, “Waveform application development process for software defined radios”,
IEEE article, Motorola SSG and SPAWARSYSCEN, 2000: 234

5

2. Develop

This is the actual ‘hands on’ of software development and programming, whereby

the system requirements and pseudo-codes are converted to actual software languages.

The coded algorithms are validated incrementally to ensure they meet the functionality

expectations. Successful increments are stored for future use and new functionalities

through design modifications are introduced for the next increment.

3. Verify

With the incremental development, the software system design gets larger and

more complex. Increments shall be integrated in this stage and verified that the system as

a whole is able to meet the holistic software requirements. For this research, the

completed system must be able to emulate the IEEE 802.11a physical layer for both the

transmitter and the receiver.

D. THESIS CHAPTERS BREAKDOWN

In this thesis, we present the approach of implementing a SDR transceiver using

OSSIE as the software platform. This work has been divided into seven chapters. The

following shows the focus of each chapter:

Chapter I: Introduction. This chapter begins by giving an overview of the thesis

objectives and follow by describing the guiding principles behind the design. The

Incremental Development Model is also discussed to set the framework for subsequent

chapters.

Chapter II: Design. In this chapter, the key concepts stipulated in the thesis title

are conveyed as requirements. Conceptual design using MATLAB models are discussed

before the OSSIE detailed design model is presented. In the detailed design, transmitter

and receiver models are discussed separately.

Chapter III: Develop – Transmitter. The design of the transmitter is presented

in this chapter. The discussion is divided into preamble, SIGNAL and DATA subframes.

It ends with the design of concatenating the three subframes to form the PPDU frame.

6

Chapter IV: Develop – Receiver. The design of the receiver is presented in this

chapter. Similar to the transmitter, the chapter is divided into preamble, SIGNAL and

DATA subframes.

Chapter V: Challenges. The IFFT/FFT and Viterbi decoder are singled out as

special interest components as their design are both involved and complex. Difficulties

and peculiarities of OSSIE software are also mentioned.

Chapter VI: Verify. Testing of the final product is carried out with reference to

the IEEE 802.11a standard. The test results for both transmitter and receiver models are

presented in this chapter.

Chapter VII: Conclusion. This chapter gives a review on the thesis objectives

and provides recommendations on potential future work with the baseline components

developed.

7

II. DESIGN

A. REQUIREMENTS ANALYSIS

In order to meet the thesis objectives, it is important to fully understand the

concepts underlying base on the thesis topic – “Software Defined Radio design for an

IEEE 802.11a Transceiver using OSSIE”. The three important concepts are Software

Defined Radio, the IEEE 802.11a wireless standard and OSSIE. In the following section,

these three concepts are presented in sufficient detail to set the design boundaries. This

shall lead to the conceptual design of the eventual software architecture.

1. Software Defined Radio

SDR refers to a radio that can be “substantially defined in software and whose

physical layer behavior can be significantly altered through changes to its software” [2].

SDR has advantages over conventional radio as it promotes multi-functionality, mobility,

compactness, ease of manufacture and ease of upgrades. The design of a SDR generally

comprises a series of procedures that include system engineering, RF chain planning,

Analog-to-Digital and Digital-to-Analog hardware selections, software and hardware

architecture selection and radio validations. For this research, the focus is only on

software architecting according to a specific standard – IEEE 802.11a.

The extent of software architecting or the boundary where software algorithms

shall be written is shown in Figure 2.

Figure 2. Model of Software Defined Radio.

For the transmitter, all functionalities from the input binary data to the digitized

input to the Digital-to-Analog Converter (DAC) will be implemented in software.

Similarly, for the receiver, all functionalities after the Analog-to-Digital Converter

8

(ADC) to the regeneration of the binary received information will be implemented in this

thesis work. It is important to note that all software components are implemented at base

band, i.e., before up-conversion at the transmitter and after down-conversion at the

receiver.

2. IEEE 802.11a PHY Layer

The physical standard takes reference from Part11: IEEE Std 802.11a-1999

(Revision 2003) [3]. It describes the wireless LAN Medium Access Control (MAC) and

Physical Layer (PHY) specifications, specifically for high-speed physical layer in the 5

GHz band. Since the following implementation is done at base band, the carrier

frequency of approximately 5 GHz band is immaterial. IEEE 802.11a is based on

Orthogonal Frequency-Division Multiplexing (OFDM) whereby a single transmission is

encoded into multiple subcarriers. Section 17 of the standard (OFDM PHY specification

for the 5 GHz band) is the working document upon which this thesis’s algorithm is based.

A simplified explanation of the working of the OFDM PHY layer can also be found in

reference [4].

Important design requirements of an IEEE 802.11a PHY system are as follows:

a) data payload communication capabilities of 6, 9, 12, 18, 24, 36, 48, and 54

Mbits/s

b) mandatory transmitting and receiving at data rates of 6, 12, and 24 Mbits/s

c) 52 subcarriers that are modulated using binary or quadrature phase shift

keying (BPSK/QPSK), 16-quadrature amplitude modulation (QAM), or 64-

QAM.

d) Forward error correction coding (convolutional coding) with a coding rate of

1/2, 2/3, or 3/4. Viterbi decoding will be implemented at the receiver.

e) 1 OFDM symbol per 4 µs (250, 000 sym/s)

The IEEE 802.11a PHY layer consists of two core sub-layers: Physical Layer

Convergence Procedure (PLCP) and Physical Medium Dependent (PMD) layer. The

PLCP maps the MAC frames onto the medium and serves as the boundary between the

9

MAC and PHY layers. The PMD layer carries out the actual transmission of these

frames.

During transmission, multiple PHY sublayer Service Data Units (PSDUs)

cascaded down from the MAC layer shall be appended with a PLCP preamble and header

to form the PLCP Protocol Data Unit (PPDU). At the receiver, the PLCP preamble and

header are retrieved and important information is extracted to help in the delivery of the

PSDUs. For this thesis, the aim is to provide a software procedure in which PSDUs are

converted to and from PPDUs. The format for the PPDU including the PLCP preamble,

PLCP header, PSDU, tail bits, and pad bits are shown in Figure 3.

Figure 3. PPDU frame format (from: reference [3], Fig 107).

The LENGTH, RATE, reserved bit, parity bit and six “zero” tail bits are

modulated to form a single OFDM symbol known as SIGNAL. This symbol is

transmitted using BPSK modulation and a coding rate of
1
2

R = . The SERVICE field of

the PLCP header, the PSDU, six “zero” tail bits and the necessary pad bits are modulated

to form multiple OFDM symbols that is collectively known as DATA. DATA is

transmitted at a data rate according to the RATE field and the LENGTH field determines

the number of OFDM symbols in DATA. Hence, the RATE and LENGTH fields are

critical in decoding the DATA part of the packet.

3. OSSIE Platform

The Open Source SCA Implementation::Embedded (OSSIE) is developed by the

Mobile and Portable Radio Research Group (MPRG) at Virginia Tech as an open source

SCA Core Framework solution. OSSIE was created to meet the need for a C++-based,

open source SCA implementation that could be modified and adapted in a research

10

environment. The current version of OSSIE (0.5.0) is based on version 2.2.1 of the SCA

specification. A detailed presentation of the OSSIE platform can be found in Jacob A.

DePriest’s thesis entitled “A Practical Approach to Rapid Prototyping of SCA

Waveforms” at Virginia Tech [5]. From his thesis, the reader would be able to appreciate

the OSSIE Waveform Developer (OWD) environment, specifically the following

knowledge:

a) able to customize and design OSSIE components according to specific port

implementation and inter-components threading strategies

b) able to set up device assignment to each component being developed

c) able to design a waveform using OWD to map a Radio design to the OSSIE

software components available

This thesis is written with the assumption that the reader has certain prior

knowledge about the C++ programming language, including object-oriented design.

There are four important C++ files generated for each new component: <Component

Name>.h, <Component Name>.cpp, port_impl.h and port_impl.cpp. These are where the

functionalities are defined for the component. The content of these generated C++ files

are modified to provide the actual functionality of a radio component.

a) port_impl.h and port_impl.cpp: implement the port communication between

components, determining what is to be received and sent

b) <Component Name>.h and <Component Name>.cpp: ‘brain’ of the

component, where its functionalities are programmed. Most of the post-

generation codes are resided in the process_data() function call within

<Component Name>.cpp.

B. CONCEPTUAL DESIGN

Following the principle of iterative and incremental development, five models

have been developed, with each being more complex and built on the experiences

gathered from the previous. The first three are exploratory models using MATLAB,

which are relatively easy to build since many of the radio functionalities are already

available as function calls. The fourth model builds on the success of the MATLAB

11

design. It emulates a Transmitter-Receiver (Tx-Rx) design using OSSIE but following

closely the previous MATLAB model. The final model is the full scale OSSIE

implementation of IEEE 802.11a PHY layer, which is the primary objective of this thesis

work. A summary of the models is provided in Figure 4. The first four models are

described here to demonstrate the incremental approach, while Section C presents the

final full scale model.

Figure 4. Incremental conceptual design.
1. MATLAB OFDM Models

An OFDM transmission design was implemented using MATLAB according to

the source code recommended by Hiroshi and Ramjee [6]. There are three MATLAB

models implemented, namely BPSK, QPSK and OFDM transceivers.

a. BPSK Modulation / Demodulation Transceiver

A block diagram of the design is shown in Figure 5. A simple BPSK

modulation / demodulation was implemented to demonstrate the sequential flows of data

between transmitter and receiver. A description of each component is provided in Table

1. The main MATLAB file that calls the various functions is mainBPSK.m.

Figure 5. MATLAB BPSK transceiver model.

dataGen biPolar txMF

filterRRC channel

rxMFrxSamplethresholdDet

{1 0 1 1 1}

(Indata) (Data) (BiPolar)

(Txh)

(Rxh)

(TxData)

(digitisedData)(RxData)(RxSampledData)

(RxBinData)

12

Filename Purpose
dataGen generate the tx binary data
biPolar convert binary to polar data
txMF Tx pulse-shaping using root raised cosine
filterRRC generate coefficients of Nyquist filter
channel model channel distortion (e.g. AWGN, fading)
rxMF Rx pulse-shaping using root raised cosine
rxSample sample the matched filter outputs
thresholdDet threshold detector using Comparator

Table 1. MATLAB BPSK transceiver components description.

b. QPSK Modulation / Demodulation Transceiver

Next, a QPSK modulation / demodulation was implemented. The block

diagram and components description are shown in Figure 6 and Table 2, respectively.

The main MATLAB file that calls the various functions is mainQPSK.m.

Figure 6. MATLAB QPSK transceiver model.

Filename Purpose
dataGen generate the tx binary data
txIQ generate I and Q channel signals for QPSK (serial to parallel)
txMF Tx pulse-shaping using root raised cosine
filterRRC generate coefficients of Nyquist filter
channel model channel distortion (e.g. AWGN, fading)
rxMF Rx pulse-shaping using root raised cosine
rxSample sample the matched filter outputs
rxIQ demodulate I and Q channels signals for QPSK (parallel to serial)
thresholdDet threshold detector using Comparator

Table 2. MATLAB QPSK transceiver components description.

dataGen txIQ txMF

filterRRC channel

rxMF

rxIQ thresholdDet

{1 0 1 1 0 0 0 1 1 1}

(Indata = 1)
(Data) (ichData)

(Txh)

(Rxh)

(ichDigitisedData)
(ichRxData)

(demoData)
(RxBinData)

(qchData)

(ichTxData)

(qchTxData)

(qchDigitisedData)(qchRxData)

rxSample
(ichRxSampledData)

(qchRxSampledData)

13

c. OFDM Transceiver

The final design was an attempt to implement QPSK modulation with

OFDM using MATLAB. The block diagram and component descriptions are shown in

Figure 7 and Table 3, respectively. This design is the closest to the IEEE 802.11a PHY

layer with many familiar functions that would eventually be ‘converted’ to components in

OSSIE. These important functions include modulation mapping, normalization, inverse

fast Fourier transform (IFFT) for OFDM, guard insert (or cyclic prefix insert) for the

transmitter and demodulation mapping, unnormalization, fast Fourier transform (FFT) for

OFDM and guard removal (or cyclic prefix removal) for the receiver. The main

MATLAB file that calls the various functions is mainOFDM.m.

Figure 7. MATLAB OFDM transceiver model.

Filename Purpose
OFDMdataGen generate initial serial binary data
SerToPara serial to parallel conversion
QpskMod perform QPSK modulation
Normalize Normalize the tx data
IFFT IFFT for the Tx data
GiINS insert guard interval into transmission signal
GiRem remove guard interval from received signal
FFT FFT for the Rx data
UnNormalize UnNormalize the rx data
QpskDemod perform QPSK demodulation
ParaToSer parallel to serial conversion
ThresDet0 threshold detector using Comparator

Table 3. MATLAB OFDM transceiver components description.

dataGen s/p QpskMod

Normalize

Guardins

FFT thresholdDet

{1 x para x nd x ml}

(Indata = 2) (serialTxData) (paraData)

(qIFFT)

(IchN)
(iTxG)

(iFFT)

(RxBinData)

{para x (nd x ml)}

(Ich)

(Qch)

(QchN)

(qTxG)
channel

(iRxG)

IFFT
(iIFFT)

Guardrem

(qRxG)

UnNormalize

(qFFT)

QpskDemod
(IchUn)

(QchUn)
p/s

(parallelRxData)

(serialRxData){para x (nd x ml)}

14

The above three models provide a good stepping stone to the implementation of

an OSSIE transceiver since they remove many of the complex software coding that is

needed to implement the various functions. For example, IFFT and FFT are built-in

functions in MATLAB, while direct coding is needed in C++ when OSSIE is used. More

time can be spent on appreciating the data flow between components rather then

worrying about coding the functionalities, i.e., understanding the functionalities is

priority over coding the functionalities. All the necessary MATLAB files to implement

the above three designs have been included in the reference CD.

2. OSSIE Tx-Rx OFDM Model

With a better understanding of the generic OFDM transceiver using MATLAB,

the design shown in Figure 7 is ported over to OSSIE. All the functionalities are

implemented as separate OSSIE components with the addition of two new components to

demonstrate the inclusion of pilot subcarriers: carrier mapping (crMapping) and

demapping (crDemapping). Their functionalities are summarized in Table 4. Detailed

descriptions of each component shall be presented in the next two chapters under the full

scale IEEE 802.11a implementation.

Filename Purpose

crMapping adds pilot subcarriers to the modulated data prior to IFFT processing

crDeMapping removes pilot subcarriers from the FFT output prior to demodulation.
Table 4. OSSIE OFDM model additional components.

This intermediate model bridges the gaps between the MATLAB design and an

OSSIE waveform where most of the functionalities have to be coded instead of

depending on C++ built-in functions. Challenges in programming under the OSSIE

environment begin to surface in this stage. Important programming experiences and

lessons learned are described in the later chapters of this thesis. All the necessary OSSIE

component and waveform files to implement the OFDM transceiver model have been

included in the reference CD.

15

C. DETAILED DESIGN: OSSIE IEEE 802.11A TRANSCEIVER MODEL

The full scale 802.11a PHY layer is based on the IEEE standard 802.11a-1999

(Revision 2003) [3]. Design requirements are summarized in Section A.2 of this chapter.

There are two core system architectures – transmitter and receiver. Both are implemented

in software under the OWD environment.

1. Transmitter

The transmitter converts the binary inputs (especially the PSDU information from

the MAC layer) into digitized PPDU frames to be passed through the DAC before up-

conversion for RF transmission. According to Figure 3, the PPDU frame can be

subdivided into three ‘subframes’, namely PLCP preamble (or just preamble), PLCP

header excluding SERVICE (or just SIGNAL) and DATA. These represent the three

separate ‘modules’ that shall be developed and appended to form the eventual transmitter

PPDU frame. The components are developed either to carry out specific functions or to

form the frames/subframes. The types of component needed are described in the

components flow diagram of Figure 8.

Figure 8. IEEE 802.11a Transmitter components flow diagram.

16

Figure 8 shows that twelve types of components (Tx1 – Tx12) are needed.

Equally important is the fact that components of the same type are being reused in

different subframes. For example, all three subframes employ the carriers mapping

(Tx9), IFFT (Tx10) and cyclic prefix (Tx11) components, while only SIGNAL and Data

subframes require the convolution encoder (Tx6), interleaver (Tx7) and modulation

mapping (Tx8) components.

Note that windowing is not implemented as it is implementer specific and can be

customized easily using software when needed. Time domain windowing was proposed

in the IEEE 802.11a standard but it is just an informative rather than a mandatory

approach. The implementer may choose other methods to achieve the purpose of

smoothening the transitions between segments, such as frequency domain filtering.

Another way of representing the schematic is to describe the processing flow of

each subframe separately as shown in Figure 9. This provides a better pictorial view of

the functional flow for the formation of each subframe. It shows the sequential

development of the PPDU frame. Figure 9 shows the quantity of each type of component

that is needed to implement the transmitter. For example, four carriers mapping (Tx1.1.9,

Tx1.2.9. Tx2.9 and Tx3.9) components are needed, while two convolution encoder

(Tx2.6 and Tx3.6) components are necessary.

17

Figure 9. IEEE 802.11a Transmitter subframes flow diagram.

�����
���	
���

���	�

����
���	
����

������

����
���	
������

�����
������

����
���	
����

����	!"�

#�
�$�%&

�'��()���

���*+�
����,��-

	���,(.

���*�/�
����

���*���
�0���
,(-���

��1�",�
����,�

���*+�
����,��-

	���,(.

���*�/�
����

����(�

��/

��

���*2�
��()�"0�,�(

�(�����

���*3�
�(���"��)��

���*4�
5��0"��,�(

	���,(.

���*���
�0���
,(-���

��1�",�
����,�

���*+�
����,��-

	���,(.

���*�/�
����

���*2�
��()�"0�,�(

�(�����

���*3�
�(���"��)��

���*4�
5��0"��,�(

	���,(.

���*���
�0���
,(-���

��1�",�
����,�

���*+�
����,��-

	���,(.

���*�/�
����

���*6�
����	!"��

���*$�
��,"

���"���	�(�

���

���	
�� ���	
��

���	�
��

-0!���	�-

���	��,�(-

�0(��,�(-

���������	�
������

18

A summary of the functionalities of each component is provided in Table 5. The

index abides by the following naming convention:

a) The first digit from the left represents the frame or subframe that the

component belongs to. An exception is the preamble training sequences

whereby Tx1.1.x represents component that forms the short training sequence

and Tx1.2.x represents component that forms the long training sequence.

First digit Frame / subframe

0 PSDU

1 preamble subframe

2 SIGNAL subframe

3 DATA subframe

12 PPDU

b) The last digit from the left represents the function of the component.

Last digit Function

0 PSDU formation

1 preamble subframe formation

2 SIGNAL subframe formation

3 DATA subframe formation

4 Scrambler

5 Tail-replacement

6 Convolution encoder

7 Interleaver

8 Modulation

9 Carriers mapper

10 IFFT

11 Cyclic prefix

12 PPDU formation

For illustrations, Tx2.7 indicates a component under the SIGNAL subframe (2)

that carries out the interleaving (7) function.

19

Index Component Functions
Preamble subframe
Tx1 preamble_map - initiate the Tx routine

 - form short training (ST) and long training (LT) sequence
 - send preamble (ST + LT) to PPDU

Tx1.1 short training (ST)
Tx1.1.9 ST_carrier_map - ST carrier mapping
Tx1.1.10 ST_IFFT - ST IFFT
Tx1.2 long training (LT)
Tx1.2.9 LT_carrier_map - LT carrier mapping
Tx1.2.10 LT_IFFT - LT IFFT
Tx1.2.11 LT_cyclicPrefix - LT cyclic prefix append
SIGNAL subframe
Tx2 header_map

(SIGNAL_map)
 - form SIGNAL (SIG) samples
 - send SIG to PPDU

Tx2.6 SIG_conv_enc - SIG convolution encoding
Tx2.7 SIG_interleaver - SIG interleaving
Tx2.8 SIG_BPSK_mod - SIG BPSK modulation
Tx2.9 SIG_carriers_map - SIG carriers mapping
Tx2.10 SIG_IFFT - SIG IFFT
Tx2.11 SIG_cyclicprefix - SIG cyclic prefix
DATA subframe
Tx3 data_map - form time data samples from PSDU

 - send DATA samples to PPDU
Tx3.4 data_scrambler - scrambler the raw data
Tx3.5 data_tail_replacement - replace tail with zeroes
Tx3.6 data_conv_enc - data convolution encoding

 - data puncturing
Tx3.7 data_interleaver - data interleaving
Tx3.8 data_mod_map - data modulation mapping
Tx3.9 data_carriers_map - data carriers mapping
Tx3.10 data_IFFT - data IFFT
Tx3.11 data_cyclicprefix - data cyclic prefix
Tx12 PPDU_map - form PPDU frame from Preamble, SIG and DATA

subframes for transmission
Tx0 data_PSDU - input PSDU data

Table 5. IEEE 802.11a Transmitter components functionalities.

20

2. Receiver

The receiver carries out almost the inverse functions of the transmitter. In the

receiver, digitized PPDU frames (passed down from the ADC after down-conversion

from the RF front end) shall be converted into binary outputs from which the original

PSDU information can be extracted. Like the transmitter, the receiver is comprised of

three separate ‘modules’, namely preamble, SIGNAL and DATA subframes. The type of

components needed are described in the components flow diagram of Figure 10. In

comparison, fewer components are needed to implement the receiver than transmitter, but

the receiver entails more complexity in the C++ algorithm.

Figure 10. IEEE 802.11a Receiver components flow diagram.

#��7#����
����,�)�
���
�(�

����
����	!"�

#���
����,�)�
������

�����
������

#���
����,�)�
����

������

#�
�$�%&

��8('��()���

#�6�
������	!"��

#�$�
��,"

���"���	�(�

#�2�
��()�"0�,�(

�������

#�3�
��'�(���"��)��

#�4�
��	��0"��,�(

	���,(.

#�+�
����,��-

��	���,(.

#��/�
���

#����
�0���
��	�)�

��1�",�
����,�

9 ,(��8,(.

�(��
,	�"�	�(�

-�",�
���

���	�
��

-0!���	�-

����,�)�"

�0(��,�(-

���������	�
������

%���8�������8���

21

Figure 10 shows that twelve types of components (Rx1 – Rx12) are needed. Note

that Rx1 (PLCP preamble retrieval) and Rx12 (PPDU retrieval) are implemented in the

same component. Synchronization is possible by assuming that the digitized samples

received from the RF front end are compared to a fixed reference copy of the PLCP

preamble sequence. Hence, from the PPDU stream, the entire received preamble

sequence is identifiable, and this shall lead to the retrieval of the SIGNAL and DATA

subframes. Detailed implementation of this component is described in Chapter IV,

Section A2.

Like the transmitter, components of the same type are being reused in different

subframes. For example, both SIGNAL and DATA subframes employ the carriers

demapping (Rx9), FFT (Rx10) and cyclic prefix removal (Rx11) components, while only

Data subframes require the descrambler (Rx4) component. Note that windowing is again

not implemented, as it is implementer specific.

An alternate view of the schematic is to describe the processing flow of each

subframe separately as shown in Figure 11. This shows the functional flow for the

separation of each subframe and the eventual retrieval of the PSDU. Figure 11 shows the

quantity of each type of component that is needed to implement the receiver. For

example, two carriers demapping (Rx2.9 and Rx3.9) components are needed, while one

descrambler (Rx3.4) component is needed.

22

Figure 11. IEEE 802.11a Receiver subframes flow diagram.

23

The functionalities of each component are provided in Table 6. Similar to the

transmitter, the receiver’s component index abides by the following naming convention:

a) The first digit from the left represents the frame or subframe that the

component belongs to.

First digit Frame / subframe

0 Received digitized samples

1 preamble subframe

2 SIGNAL subframe

3 DATA subframe

12 PPDU

b) The last digit from the left represents the function of the component.

Last digit Function

0 Digitized samples retrieval

1 preamble subframe retrieval

2 SIGNAL subframe retrieval

3 DATA subframe retrieval

4 Descrambler

5 Tail-replacement

6 Convolution decoder

7 Deinterleaver

8 Demodulation

9 Carriers demapper

10 FFT

11 Cyclic prefix removal

12 PPDU retrieval

For example, Rx3.7 indicates a component under the DATA subframe (3) that

carries out the deinterleaving (7) function.

24

Index Component Functions
Preamble subframe
Rx0 Rx_data - received digitized data stream
Rx1 / Rx12 PPDU_rx - extract the required digitized PPDU stream

 - removed preamble from PPDU
 - send stream for header removal

SIGNAL subframe
Rx2 Header_rx

(SIGNAL_rx)
 - removed header from PPDU
 - send header for processing
 - extract RATE & LENGTH from SIG
 - send received data for processing

Rx2.11 SIG_cyclicprefix_rem - SIG cyclic prefix removal
Rx2.10 SIG_FFT - SIG FFT
Rx2.9 SIG_carriers_demap - SIG carriers demapping
Rx2.8 SIG_BPSK_demod - SIG BPSK demodulation
Rx2.7 SIG_deinterleaver - SIG deinterleaving
Rx2.6 SIG_conv_dec - SIG convolution decoding
DATA subframe
Rx3 data_rx - receive and send raw data for processing

 - receive and send PSDU data to MAC layer
Rx3.11 data_cyclicprefix_rem - data cyclic prefix removal
Rx3.10 data_FFT - data FFT
Rx3.9 data_carriers_demap - data carriers demapping
Rx3.8 data_demod_map - data demodulation mapping
Rx3.7 data_deinterleaver - data deinterleaving
Rx3.6 data_conv_dec - data dummy insertion

 - data convolution decoding
Rx3.5 data_tail_replace - not required, encompass in descrambler
Rx3.4 data_descrambler - descrambler the raw data

Table 6. IEEE 802.11a Receiver components functionalities.

In the next two chapters, the developmental details of each transmitter and

receiver component are presented. The focus is on the C++ algorithm that implement the

various functionalities. These functionalities are developed according to Table 5 and

Table 6.

25

III. DEVELOP: TRANSMITTER

This and the next chapter provide the developmental details of the components in

the transmitter and receiver to model the IEEE 802.11a PHY layer. In this chapter, the

first three sections describe the three subframes of the transmitter: preamble, SIGNAL

and DATA. The last section describes how the subframes are concatenated to form the

PPDU. Components are described according to the inter-linkages of the input-output

(I/O) ports and the functional implementation in C++ code.

The transmitter converts the binary inputs (especially the PSDU information from

the MAC layer) into digitized PPDU frames to be sent through the DAC before up-

conversion for RF transmission. The incremental development is discussed here starting

with the preamble subframe, followed by SIGNAL subframe and, finally, the overall

PPDU frame with the inclusion of the DATA subframe.

A. PREAMBLE

The PLCP preamble subframe consists of ten repetitions of a short training (ST)

sequence and two repetitions of a long training (LT) sequence, preceded by a guard

interval (cyclic prefix). The format for the PLCP preamble subframe is presented in

Figure 12. Table 7 summarizes the OSSIE components needed to form the preamble

subframe.

Figure 12. PPDU frame structure and timing. (from: reference [3], Fig. 110).

26

Index Component Functions
Tx1 preamble_map - initiate the Tx routine

 - form short training (ST) and long training (LT) sequence
 - send preamble (ST + LT) to form PPDU

Tx1.1 short training (ST)
Tx1.1.9 ST_carriers_map - ST carriers mapping
Tx1.1.10 ST_IFFT - ST IFFT
Tx1.2 long training (LT)
Tx1.2.9 LT_carriers_map - LT carriers mapping
Tx1.2.10 LT_IFFT - LT IFFT
Tx1.2.11 LT_cyclicPrefix - LT cyclic prefix append

Table 7. IEEE 802.11a Transmitter preamble subframe components functionalities.

1. Tx1: Preamble Mapping (Assembly Controller)

Component name: preamble_map

Port design: preamble_map is the assembly controller for the transmitter.

Assembly controller is the only component within each model where the start() function

is being called when the waveform is first loaded. When it is time to start the radio, the

assembly controller’s start() function shall initiate the transmitter software routine to

form the PPDU frame. It has a total of 2 input ports where data is flowing into the

component (ST_input and LT_input) and 3 output ports where data is flowing out of the

component (ST_processing, LT_processing and preamble subframe). Figure 13 shows the

I/O distribution of the component.

Figure 13. preamble_map port and functional flow.

Process data ()

Tx1: preamble_map

Initiate Tx routine

Call ST processing

Tx1.1.9:
ST_carriers_map

Tx1.1.10:
ST_IFFT

Store ST sequence Call LT processing

Tx1.1.2.9:
LT_carriers_map

Tx1.1.2.11:
LT_cyclicPrefix

Store LT sequence

Tx1-O1:
ST_processing

Tx1-I1:
ST_Input

Tx1-O2:
LT_processing

Tx1-O3:
Preamble
subframe

Tx1-I2:
LT_Input

Tx12:
PPDU_map

Start ()

Legends

External
component Function call Task in

the function I / O port

27

Functional design: preamble_map carries out three main functions: (1) initiate

the transmitter routine, (2) form ST and LT sequences, and (3) append the two sequences

and form the preamble subframe. This sequential functional flow is shown in Figure 13.

After the initiation from the start() function, process_data() is called to start the ST

processing. The ST_processing output port is activated to push the relevant packets to

another component, ST_carriers_map, which carries on with the formation of ST

sequences. Eventually, the processed ST sequence shall be routed back to preamble_map

component from ST_IFFT component via the ST_input input port. The same approach is

carried out to generate the LT sequence by using the LT_processing output port and

LT_input input port to connect to LT_carriers_map and LT_cyclicPrefix component

respectively. With the two sequences generated and attached to each other, the final data

is pushed to PPDU_map component via the preamble_subframe output port.

2. Tx1.1.9: Carriers Mapping (ST)

Component name: ST_carriers_map

Port design: ST_carriers_map has 1 input port and 1 output port. Figure 14 shows

the I/O distribution of the component.

Functional design: Its main function is to re-index and normalize the 52

subcarriers of the initial short training sequence as part of the 64 frequency samples (by

introducing guard bands as stipulated in the IEEE standard) to serve as input into the

IFFT component. The functional flow is shown in Figure 14.

Figure 14. ST_carriers_map port and functional flow.

Tx1.1.9: ST_carriers_map

Tx1.1.10:
ST_IFFT

Process data ()

Tx1:
preamble_map

Tx1.1.9-I1:
crMap_input

Tx1.1.9-O1:
crMap_outputRe-indexing Normalize

28

3. Tx1.1.10: IFFT (ST)

Component name: ST_IFFT

Port design: ST_IFFT has 1 input port and 1 output port. Figure 15 shows the I/O

distribution of the component.

Functional design: The component emulates OFDM processing through a

software IFFT algorithm. From ST_carriers_map, 64 frequency samples shall be sent

through ST_IFFT to convert to 64 time samples. In this implementation the Decimation-

In-Time (DIT) Permutated Input - Natural Output (PINO) IFFT algorithm [7] is selected

as it is reasonably easy to comprehend and code. The time samples need to be duplicated

10 times to form the necessary sequence length for the preamble subframe. The

functional flow is shown in Figure 15. The DIT PINO IFFT algorithm has been singled

out as special interest component that shall be described in Chapter V.

Figure 15. ST_IFFT port and functional flow.

4. Tx1.2.9: Carriers Mapping (LT)

Component name: LT_carriers_map

Port design: LT_carriers_map has 1 input port and 1 output port. Figure 16 shows

the I/O distribution of the component.

Functional design: Similar to its ST counterpart, LT_carriers_map re-indexes the

52 subcarriers of the initial long training sequence as part of the 64 frequency samples

(by introducing guard bands as stipulated in the IEEE standard) to serve as input into the

IFFT component. The functional flow is shown in Figure 16.

Tx1.1.9:
ST_carriers_map

Tx1.1.10: ST_IFFT

Process data ()

Tx1:
preamble_map

Tx1.1.10-I1:
IFFT_input

Tx1.1.10-O1:
IFFT_output

Convert input to
complex (I/Q) freq

samples
Bit reverssal

DIT PINO
IFFT x10

29

Figure 16. LT_carriers_map port and functional flow.

5. Tx1.2.10: IFFT (LT)

Component name: LT_IFFT

Port design: LT_IFFT has 1 input port and 1 output port. Figure 17 shows the I/O

distribution of the component.

Functional design: Like ST_IFFT, this component emulates OFDM processing

through software IFFT algorithm. From LT_carriers_map, 64 frequency samples will be

sent through LT_IFFT to convert to 64 time samples. The DIT PINO IFFT algorithm

shall be described in Chapter V. The time samples are duplicated twice before inserting a

cyclic prefix in the next component. The functional flow is shown in Figure 17.

Figure 17. LT_IFFT port and functional flow.

6. Tx1.2.11: Cyclic Prefix (LT)

Component name: LT_cyclicPrefix

Tx1.2.9: LT_carriers_map

Tx1.2.10:
LT_IFFTProcess data ()

Tx1:
preamble_map

Tx1.2.9-I1:
crMap_input

Tx1.2.9-O1:
crMap_outputRe-indexing

Tx1.2.9:
LT_carriers_map

Tx1.2.10: LT_IFFT

Process data ()

Tx1.2.10-I1:
IFFT_input

Tx1.2.10-O1:
IFFT_output

Convert input to
complex (I/Q) freq

samples
Bit reverssal

DIT PINO
IFFT x2

Tx1.1.2.11:
LT_cyclicPrefix

30

Port design: LT_cyclicPrefix has 1 input port and 1 output port. Figure 18 shows

the I/O distribution of the component.

Functional design: LT_cyclicPrefix prefixes half the length of one full IFFT time

samples to the data to form the LT sequence. This sequence is forwarded to

preamble_map and appended to the ST sequence as preamble subframe. The functional

flow is shown in Figure 18.

Figure 18. LT_ cyclicPrefix port and functional flow.

B. SIGNAL

The SIGNAL symbol consists of RATE and LENGTH fields that are encoded by

a convolutional code of
1
2

R = . It is subsequently mapped onto a single OFDM symbol

with BPSK sub-channel modulation. The encoding of the SIGNAL field into an OFDM

symbol follows the procedures: convolutional encoding, interleaving, BPSK modulation,

pilot insertion (guard band), IFFT and appending a cyclic prefix at a data rate of 6

Mbits/s. Unlike the DATA subframe, the information bits of the SIGNAL field are not

scrambled. Table 8 summarizes the components needed to form the SIGNAL subframe.

Index Component Functions
Tx2 header_map

(SIGNAL_map)
 - form SIGNAL (SIG) samples
 - send SIG to form PPDU

Tx2.6 SIG_conv_enc - SIG convolution encoding
Tx2.7 SIG_interleaver - SIG interleaving
Tx2.8 SIG_BPSK_mod - SIG BPSK modulation
Tx2.9 SIG_carriers_map - SIG carriers mapping
Tx2.10 SIG_IFFT - SIG IFFT
Tx2.11 SIG_cyclicprefix - SIG cyclic prefix

Table 8. IEEE 802.11a Transmitter SIGNAL subframe components functionalities.

Tx1.2.11: LT_cyclicPrefix

Tx1.2.10:
LT_IFFT

Process data () Tx1:
preamble_map

Tx1.2.11-I1:
cyPre_input

Tx1.2.11-O1:
cyPre_output

Append
(IFFT_len/2) prefix

Shift input right
by (IFFT_len/2)

31

1. Tx2: SIGNAL Mapping

Component name: SIGNAL_map

Port design: SIGNAL_map has a total of 2 input ports and 2 output ports. Figure

19 shows the I/O distribution of the component.

Functional design: SIGNAL_map carries out the function of concatenating

important parameters (especially RATE and LENGTH) and sending it for processing to

form an OFDM symbol at a data rate of 6 Mbits/s. At this data rate, the modulation type

and data structure are fixed as shown in Table 9. RATE and LENGTH can either be

passed down from the MAC layer or entered by other means.

The final symbol shall form the SIGNAL subframe to be transmitted as part of

PPDU. The SIGNAL field is composed of 24 bits, as shown in Figure 20. Bits 0 to 3 shall

represent the RATE. Bit 4 is reserved for future use. Bits 5 to 16 shall represent the

LENGTH field, with the least significant bit (LSB) being transmitted first. The

component functional flow is shown in Figure 19.

Data rate

()Mbits s
Modulation Coding rate

()R
Coded bits

Per
subcarrier

()BPSCN

Coded bits
per OFDM

symbol

()CBPSN

Data bits
per OFDM

symbol

()DBPSN

6 BPSK 1/2 1 48 24
Table 9. Rate-dependent parameters: 6 Mbits/s.

Figure 19. SIGNAL_map port and functional flow.

Retrieve from
MAC layer

Tx12:
PPDU_map

Form SIG
raw bits

RES, PAR,TAIL

Call SIG
processing

Tx2.6:
SIG_conv_enc

Tx2.11:
SIG_cyclicPrefix

Store SIG
sequence

Tx2-O1:
SIG_processing

Tx2-O2:
SIG

subframe

Tx2-I2:
SIG_append_Input

Tx12:
PPDU_map

Tx2: SIGNAL_map

Process data ()

MAC layer:
RATE, LENGTH

Tx2-I1:
PPDU_CB_input

32

Figure 20. composition of SIGNAL field (from: reference [3], Fig. 111).

2. Tx2.6: Convolutional Encoder (SIG)

Component name: SIG_conv_enc

Port design: SIG_conv_enc has 1 input port and 1 output port. Figure 22 shows

the I/O distribution of the component.

Functional design: The SIGNAL field is coded with a convolutional encoder to a

coding rate of
1
2

R = . The convolutional encoder is shown in Figure 21 with the two

generator polynomials stated in the IEEE 802.11a standard (8133Ag = and 8171Bg =)

and a fixed rate
1
2encR = . The output data “A” is transmitted from the encoder before the

output bit denoted as “B”. The functional flow is shown in Figure 22. Since there are six

memory elements (constraint length ν of 7) in the shift register, this explains the

requirement of having six “zero” tail bits in the SIGNAL field prior to encoding.

Figure 21. convolutional encoder (7ν =) (from: reference [3], Fig. 114).

33

Figure 22. SIG_conv_enc port and functional flow.

3. Tx2.7: Interleaver (SIG)

Component name: SIG_interleaver

Port design: SIG_interleaver has 1 input port and 1 output port. Figure 23 shows

the I/O distribution of the component.

Functional design: All data bits are passed through a block interleaver after the

encoding process. The interleaver has a block size equals to the number of coded bits in a

single OFDM symbol, CBPSN (see Table 9). The interleaver consists of two different

permutations. The first permutation ensures that adjacent coded bits do not map onto

adjacent subcarriers (refers to Equation 1 for the mapping). The second permutation

ensures that adjacent coded bits are alternate between less and more significant bits after

the mapping to prevent long runs of low reliability bits [3] (refers to Equation 2 for the

mapping). Note that k , i and j refer to the index of the coded bit before the first, before

the second and after the second permutation, respectively. The function floor(.) denotes

the largest integer not exceeding the parameter. The value of s is derived from the

number of coded bits per subcarrier, BPSCN , according to max ,1
2
BPSCN

s � �= � �
� �

. Hence,

1s = . The functional flow is shown in Figure 23.

()mod 16 , 0,1, , 1
16 16
CBPS

CBPS

N k
i k floor i k N� � � �= + = −� �� �

� �� �
� (1)

16 mod , 0,1, , 1CBPS CBPS
CBPS

i i
j s floor i N floor s i j N

s N

� �� �� �= × + + − × = −� �� �� � � �� � � �� �
� (2)

Process data ()

Tx2.6: SIG_conv_enc

Input information
bits

Tx2.6-O1:
convEnc_output

Tx2.7:
SIG_interelaverX

Tx2.6-I1:
convEnc_input

Tx2:
SIGNAL_map

Encoder
polynomial

34

Figure 23. SIG_interleaver port and functional flow.

4. Tx2.8: BPSK Modulation (SIG)

Component name: SIG_BPSK_mod

Port design: SIG_BPSK_mod has 1 input port and 1 output port. Figure 29 shows

the I/O distribution of the component.

Functional design: The SIGNAL OFDM subcarriers shall be modulated by using

BPSK modulation. The encoded and interleaved binary input data shall be converted into

complex BPSK constellation points. The output values for a modulator are formed by

multiplying the resulting I and Q channel values by a normalization factor KMOD to

achieve the same average power for all mappings. For BPSK modulation, KMOD is unity,

and normalization is not necessary in this specific modulator.

Figure 24. SIG_BPSK_mod port and functional flow.

5. Tx2.9: Carriers Mapping (SIG)

Component name: SIG_carriers_map

Port design: SIG_carriers_map has 1 input port and 1 output port. Figure 25

shows the I/O distribution of the component.

Process data ()

Tx2.6:
SIG_conv_enc 1st permutation Tx2.7-O1:

interleaver_output
Tx2.8:

SIG_BPSK_mod
Tx2.7-I1:

Interleaver_input

2nd permutation

Tx2.7: SIG_interelaver

35

Functional design: Four pilot tones are inserted to form 52 subcarriers. Similar to

its preamble counterpart, SIG_carriers_map re-indexes this 52 subcarriers after BPSK

modulation as part of the 64 frequency samples (by introducing guard bands as stipulated

in the IEEE standard) to serve as input into the IFFT component. The functional flow is

shown in Figure 25.

Figure 25. SIG_carriers_map port and functional flow.

6. Tx2.10: IFFT (SIG)

Component name: SIG_IFFT

Port design: SIG_IFFT has 1 input port and 1 output port. Figure 26 shows the I/O

distribution of the component.

Functional design: From SIG_carriers_map, 64 frequency samples will be sent

through SIG_IFFT to convert to 64 time samples. The DIT PINO IFFT algorithm shall be

described in Chapter V. The functional flow is shown in Figure 26.

Figure 26. SIG_IFFT port and functional flow.

7. Tx2.11: Cyclic Prefix (SIG)

Component name: SIG_cyclicPrefix

36

Port design: SIG_cyclicPrefix has 1 input port and 1 output port. Figure 27 shows

the I/O distribution of the component.

Functional design: SIG_cyclicPrefix prefixes a quarter of the length of the IFFT

time samples to the data to form the SIGNAL subframe. This sequence shall be

forwarded to SIGNAL_map to be concatenated as part of PPDU. The functional flow is

shown in Figure 27.

Figure 27. SIG_cyclicPrefix port and functional flow.

C. DATA

The DATA field contains the SERVICE field, the PSDU, the TAIL bits, and the

PAD bits (when necessary). The SERVICE field has 16 bits as shown in Figure 28. The

first 7 bits are set to zeros to synchronize the descrambler over at the receiver. The

remaining 9 bits are reserved for future use and are also set to zero. The PSDU tail bit

field shall be six bits of “0”, which serve the function of returning the convolutional

encoder to the “zero state” (similar function as the 6 tail bits of SIGNAL field). The

PPDU tail bit field shall be maintained by replacing six scrambled “zero” bits following

the end of the message (which may not be “zero”) with six non-scrambled “zero” bits.

Figure 28. Composition of SERVICE field (from: reference [3], Fig. 112).

37

Besides all the components (functionalities) under the SIGNAL subframe,

forming the DATA subframe requires an additional initial procedure of scrambling the

information. Table 10 summarizes the components needed to form the DATA subframe.

Index Component Functions
Tx3 data_map - form time data samples from PSDU

 - send DATA samples to form PPDU
Tx3.4 data_scrambler - scramble the raw data
Tx3.5 data_tail_replacement - replace tail with zero
Tx3.6 data_conv_enc - data convolutional encoding

 - data puncturing
Tx3.7 data_interleaver - data interleaving
Tx3.8 data_mod_map - data modulation mapping
Tx3.9 data_carriers_map - data carriers mapping
Tx3.10 data_IFFT - data IFFT
Tx3.11 data_cyclicprefix - data cyclic prefix
Tx0 data_PSDU - input PSDU data
Table 10. IEEE 802.11a Transmitter DATA subframe components functionalities.

1. Tx3: DATA Mapping

Component name: DATA_map

Port design: DATA_map has a total of 3 input ports and 3 output ports. Figure 29

shows the I/O distribution of the component.

Figure 29. DATA_map port and functional flow.

Functional design: DATA_map is the heart of DATA processing at the PHY layer

where PSDUs from the MAC layer are processed into time samples to be concatenated

and formed the PPDU. The first function in this component is to extract important

information from the two control fields: RATE and LENGTH. From RATE (data

Tx3-O1:
PSDU_processing

Tx12:
PPDU_map

Store PSDU
data

Call DATA
processing

Tx3.4:
DATA_scrambler

Tx3.11:
DATA_cyclicPrefix

Store DATA
sequence

Tx3-O2:
DATA_processing

Tx3-O3:
DATA

subframe

Tx3-I3:
DATA_Input

Tx12:
PPDU_map

Tx3: DATA_map

Process data ()

Tx0:
DATA_PSDU

Tx3-I1:
PPDU_CB_input

Tx3-I2:
PSDU_input

Process control
fields:

RATE, LENGTH

Retrieve PSDU
data

Form raw DATA
sequence

38

transmission rate), the modulation type and coding parameters are defined as shown in

Table 11.

Data rate

()Mbits s
Modulation Coding rate

()R
Coded bits

Per
subcarrier

()BPSCN

Coded bits
per OFDM

symbol

()CBPSN

Data bits
per OFDM

symbol

()DBPSN

6 BPSK 1/2 1 48 24
9 BPSK 3/4 1 48 36
12 QPSK 1/2 2 96 48
18 QPSK 3/4 2 96 72
24 16-QAM 1/2 4 192 96
36 16-QAM 3/4 4 192 144
48 64-QAM 2/3 6 288 192
54 64-QAM 3/4 6 288 216

Table 11. Rate-dependent parameters.

The LENGTH field determines the size of PSDU to be sent in a PPDU frame,

which is user dependent. The length of the message is extended to be a multiple of

DBPSN , while ensuring the number of bits in the DATA field is a multiple of CBPSN . This

is possible by inserting PAD bits to the PPDU frame. The number of OFDM symbols,

SYMN , the number of bits in the DATA field, DATAN , and the number of PAD bits, PADN ,

are computed according to Equation 3, 4 and 5 respectively.

()() c 16 8 6SYM DBPSN eiling LENGTH N= + × + (3)

 DATA SYM DBPSN N N= × (4)

() - 16 8 6PAD DATAN N LENGTH= + × + (5)

The ceiling(.) function returns the smallest integer value greater than or equal to

its argument value. The appended PAD bits are set to “zero” and shall be scrambled with

the other bits in the DATA field.

From the LENGTH field, DATA_map carries out its second function of retrieving

the PSDU from the MAC layer (simulated by DATA_PSDU). After that, the DATA bits

are sent for processing into time samples. The OFDM symbols are transferred to

PPDU_map and form the PPDU. The functional flow is shown in Figure 29.

39

2. Tx3.4: Scrambler (DATA)

Component name: DATA_scrambler

Port design: DATA_scrambler has 1 input port and 1 output port. Figure 31 shows

the I/O distribution of the component.

Functional design: The DATA subframe shall be scrambled with a length-127

scrambler stipulated in the IEEE 802.11a standard (as illustrated in Figure 30). The

scrambler is set to a pseudo random non-zero initial state when first applied to the input

data. This initial state must be the same as that for the receiver descrambler. The

functional flow is shown in Figure 31. 1X to 7X represent the seven shift registers and

the outputs from the fourth ()4X and seventh ()7X registers are mod-2 added and

cycled back to the shift registers. This mod-2 output is also used to scramble the input

data by mod-2 addition with the input data.

Figure 30. DATA scrambler (from: reference [3], Fig. 113).

Figure 31. DATA_ scrambler port and functional flow.

3. Tx3.5: Tail Replacement (DATA)

Component name: DATA_tail_replacement

Port design: DATA_tail_replacement has 1 input port and 1 output port. Figure 32

shows the I/O distribution of the component.

40

Functional design: The DATA tail bit field shall be reproduced by replacing six

scrambled “zero” bits following the message end with six non-scrambled “zero” bits. The

six “zero” tail bits are needed to return the convolution encoder (next component) to the

state of all “zero”. The functional flow is shown in Figure 32.

Figure 32. DATA_ tail_replacement port and functional flow.

4. Tx3.6: Convolutional Encoder (DATA)

Component name: DATA_conv_enc

Port design: DATA_conv_enc has 1 input port and 1 output port. Figure 34 shows

the I/O distribution of the component.

Functional design: The DATA subframe shall be coded with a convolutional

encoder of coding rate
1
2

R = ,
2
3

, or
3
4

, depending on the data rate being transmitted

(see Table 11). The convolutional encoder is shown in Figure 21 with the two generator

polynomials stated in the IEEE 802.11a standard (8133Ag = and 8171Bg =) and a fixed

rate
1
2encR = . The bit denoted as “A” is transmitted from the encoder before the bit

denoted as “B”. The process of puncturing is employed to obtain the higher coding rates.

Puncturing is a procedure for removing some of the encoded bits in the transmitter after

passing through the
1
2encR = generator polynomials. The puncturing patterns are

illustrated in Figure 33 for
2
3

R = and
3
4

. Note that no puncturing is needed for
1
2

R = .

The functional flow of the component is shown in Figure 34.

41

Puncturing code: R=3/4

 Source bits x0 x1 x2 x3 x4 x5 x6 x7 x8

 Encoded bits A0 A1 A2 A3 A4 A5 A6 A7 A8
 B0 B1 B2 B3 B4 B5 B6 B7 B8

 Transmitted bits A0 B0 A1 B2 A3 B3 A4 B5 A6 B6 A7 B8

Puncturing code: R=2/3

 Source bits x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

 Encoded bits A0 A1 A2 A3 A4 A5 A6 A7 A8 A9
 B0 B1 B2 B3 B4 B5 B6 B7 B8 B9

 Transmitted bits A0 B0 A1 A2 B2 A3 A4 B4 A5 A6 B6 A7 A8 B8 A9

 punctured bit

Figure 33. DATA_conv_enc puncturing patterns (after: reference [3], Fig. 115).

Figure 34. DATA_conv_enc port and functional flow.

5. Tx3.7: Interleaver (DATA)

Component name: DATA_interleaver

Port design: DATA_interleaver has 1 input port and 1 output port. Figure 35

shows the I/O distribution of the component.

Functional design: All data bits are passed through a block interleaver after the

encoding process. The interleaver has a block size equals to the number of coded bits in a

single OFDM symbol, CBPSN (see Table 11). The interleaver consists of two different

permutations as described in Section B3. The value of s is derived from the number of

42

coded bits per subcarrier, BPSCN , according to max ,1
2
BPSCN

s � �= � �
� �

. Note that this process

is carried out for BLOCKN (SYMN) iterations. The functional flow is shown in Figure 35.

Figure 35. DATA_interleaver port and functional flow.

6. Tx3.8: Modulation Mapping (DATA)

Component name: DATA_mod_map

Port design: DATA_mod_map has 1 input port and 1 output port. Figure 37 shows

the I/O distribution of the component.

Functional design: The DATA OFDM subcarriers is modulated by either BPSK,

QPSK, 16-QAM, or 64-QAM modulation, depending on the RATE field. The input

binary data shall be converted into complex constellation points as shown in Figure 36.

The output values are formed by multiplying the resulting complex value by a

normalization factor MODK (see Table 12) to achieve the same average power for all

mappings. The functional flow is shown in Figure 37.

Modulation KMOD

BPSK 1
QPSK 1/:2

16 QAM 1/:10
64 QAM 1/:42

Table 12. Normalization factor (after: reference [3], Table 81).

43

 Input bits
(b0)

I-out Q-out

0 -1 0
BPSK

1 1 0

 Input bits
(b0)

I-out Input bits
(b1)

Q-out Input bits
(b0,b1,b2)

I-out Input bits
(b3,b4,b5)

Q-out

0 -1 0 -1 000 -7 000 -7
QPSK

1 1 1 1 001 -5 001 -5

 011 -3 011 -3

 Input bits
(b0,b1)

I-out Input bits
(b2,b3)

Q-out 010 -1 010 -1

00 -3 00 -3 110 1 110 1

01 -1 01 -1 111 3 111 3

11 1 11 1 101 5 101 5
16 QAM

10 3 10 3

64 QAM

100 7 100 7

Figure 36. Constellation modulation mapping (after: reference [3], Table 82 to 85).

Figure 37. DATA_mod_map port and functional flow.

7. Tx3.9: Carriers Mapping (DATA)

Component name: DATA_carrier_map

Port design: DATA_carrier_map has 1 input port and 1 output port. Figure 38

shows the I/O distribution of the component.

Functional design: Four pilot tones are inserted to form 52 subcarriers. Similar to

its SIGNAL counterpart, DATA_carrier_map re-indexes the 52 subcarriers after

modulation as part of the 64 frequency samples (by introducing guard bands as stipulated

in the IEEE standard) to serve as input into the IFFT component. Note that this process is

carried out for SYMN iterations. The functional flow is shown in Figure 38.

44

Figure 38. DATA_carriers_map port and functional flow.

8. Tx3.10: IFFT (DATA)

Component name: DATA_IFFT

Port design: DATA_IFFT has 1 input port and 1 output port. Figure 39 shows the

I/O distribution of the component.

Functional design: From DATA_carriers_map, 64 frequency samples will be sent

through DATA_IFFT to convert to 64 time samples. The DIT PINO IFFT algorithm shall

be described in Chapter V. Note that this process is carried out for SYMN iterations. The

functional flow is shown in Figure 39.

Figure 39. DATA_IFFT port and functional flow.

9. Tx3.11: Cyclic Prefix (DATA)

Component name: DATA_cyclicPrefix

Port design: DATA_cyclicPrefix has 1 input port and 1 output port. Figure 40

shows the I/O distribution of the component.

Functional design: DATA_cyclicPrefix prefixes a quarter of the length of the

IFFT time samples to the data to form the DATA subframe. Note that this process is

45

carried out for SYMN iterations. The final sequence shall be forwarded to DATA_map to

be concatenated as part of the PPDU. The functional flow is shown in Figure 40.

Figure 40. DATA_cyclicPrefix port and functional flow.

D. PPDU (FINAL CONCATENATION)

The final piece to the transmitter is the function of concatenating the preamble,

SIGNAL and DATA subframes together and form the PPDU frame. This main control is

carried out by the PPDU_map component.

1. Tx12: PPDU Mapping

Component name: PPDU_map

Port design: PPDU_map has a total of 3 input ports and 3 output ports. Figure 41

shows the I/O distribution of the component.

Functional design: As mentioned, PPDU_map is the final component that

concatenates all the three subframes. It carries out three main functions: (1) retrieves

preamble subframe from preamble_map component, (2) initiate SIGNAL processing and

storage and (3) initiate DATA processing and storage. The final PPDU frame is ready to

be sent for hardware DAC and RF up-conversion to the 5GHz range before transmission

as stipulated in the IEEE 802.11a standard. The functional flow is shown in Figure 41.

46

Figure 41. PPDU_map port and functional flow.

In this chapter, the developmental details of the transmitter to model the IEEE

802.11a PHY layer have been described. The transmitter components consist of the

preamble, SIGNAL and DATA subframes. These three subframes are concatenated

subsequently to from the PPDU frame. In the next chapter, we shall focus on describing

the developmental details for the receiver components.

47

IV. DEVELOP: RECEIVER

This chapter focuses on the receiver portion of the IEEE 802.11a PHY layer. Like

before, the components are described according to the inter-linkages of the input-output

(I/O) ports and the functional implementation in C++ code.

The receiver converts the digitized PPDU frames (passed down from the ADC

after down-conversion from the RF front end) into binary outputs from which the original

PSDU information can be extracted. The incremental development is discussed here

starting with the removal of the preamble subframe, follow by the SIGNAL subframe,

and finally, the DATA subframe where the PSDU is extracted.

A. PREAMBLE

In this subframe, the two core tasks are to receive the digitized time samples and

remove the preamble subframe prior further processing. The preamble subframe consists

of training sequences, which are predictable such that it can be tracked and removed from

the received data. Table 13 summarizes the components needed to remove the preamble

subframe from the received data.

Index Component Functions
Rx0 Rx_data - receive digitized data stream
Rx1 / Rx12 PPDU_rx - extract the required digitized PPDU stream

 - removed preamble from PPDU
 - send stream for SIG removal

Table 13. IEEE 802.11a Receiver preamble subframe components functionalities.

1. Rx0: Receiver Data (Assembly Controller)

Component name: Rx_data

Port design: Rx_data is the assembly controller for the receiver. It initiates the

receiver software routine to extract the PSDU frame. It has one output port that sends

continuous digitized time samples to PPDU_rx component. Figure 42 shows the I/O

distribution of the component.

48

Figure 42. Rx_data port and functional flow.

Functional design: Rx_data emulates the ADC interface at the receiver by sending

digitized samples for software processing. For testing purposes, the test data provided in

Annex G of IEEE 802.11a standard [3] shall be sent out from Rx_data one sample at a

time. It will be followed by a stream of ‘zero’ until it reaches the upper limit assumed in

the simulation. This sequential functional flow is shown in Figure 42.

2. Rx1: PPDU Receiver

Component name: PPDU_rx

Port design: PPDU_rx has a total of 1 input port and 1 output port. Figure 43

shows the I/O distribution of the component.

Figure 43. PPDU_rx port and functional flow.

Functional design: PPDU_rx carries out three main functions: (1) receive the

digitized time samples, (2) remove preamble subframe, and (3) send the processed data

stream for SIGNAL subframe processing. For synchronization, the digitized samples are

continually received until the component senses a continuous stream of ‘zeros’

(determine by nsCount). This indicates all the digitized samples have been received. The

received data stream is compared with the preamble training sequence (a concatenation of

ST and LT sequences) that is specified in the IEEE 802.11a standard [3] and, therefore,

Process data ()

Rx1: PPDU_rx

Retrieve digitized
samples

Remove Preamble
subframe

Rx1-O1:
PPDU_rx_output

Rx2:
SIGNAL_rx

Rx1-I1:
PPDU_rx_input

Rx0:
Rx_data

nsCount of
‘zeros’?

No

Yes

Send Preamble-
removed sequence

Preamble
reference

Process data ()

Rx0: Rx_data

Initiate Rx routine

Retrieve digitized
samples

ADC
(Hardware receiver)

Send digitized
samples

Rx0-O1:
Rx_output

Rx1:
PPDU_rx

Start ()

49

known in advance, and the remaining (SIGNAL + DATA) subframes are extracted. The

functional flow is shown in Figure 43.

B. SIGNAL

The SIGNAL symbol consists of the critical RATE and LENGTH fields that are

encoded by a convolutional code of
1
2

R = . In order to remove this subframe, the

functionalities described in the equivalent transmitter subframe shall be reversed to

extract the two critical fields. The decoding of the SIGNAL field into an OFDM symbol

follows the procedures: removing the cyclic prefix, FFT, removing the pilot tones (guard

bands), BPSK demodulation, deinterleaving and, finally, convolutional decoding at a data

receiver rate of 6 Mbits/s. Table 14 summarizes the components needed to extract the

necessary fields.

Index Component Functions
Rx2 Header_rx

(SIGNAL_rx)
 - removed SIG from PPDU
 - send SIG for processing
 - extract RATE & LENGTH from SIG
 - send received data for processing

Rx2.11 SIG_cyclicprefix_rem - SIG cyclic prefix removal
Rx2.10 SIG_FFT - SIG FFT
Rx2.9 SIG_carriers_demap - SIG carriers demapping
Rx2.8 SIG_BPSK_demod - SIG BPSK demodulation
Rx2.7 SIG_deinterleaver - SIG deinterleaving
Rx2.6 SIG_conv_dec - SIG convolutional decoding

Table 14. IEEE 802.11a Receiver SIGNAL subframe components functionalities.

1. Rx2: SIGNAL Receiver

Component name: SIGNAL_rx

Port design: SIGNAL_rx has a total of 2 input ports and 2 output ports. Figure 44

shows the I/O distribution of the component.

Functional design: SIGNAL_rx carries out the function of extracting important

parameters (RATE and LENGTH) and sends them for DATA processing together with

the DATA subframe. At a data rate of 6 Mbits/s, the modulation type and coding

parameters are fixed as shown in Table 15. The functional flow is shown in Figure 44.

50

Data rate

()Mbits s
Modulation Coding rate

()R
Coded bits

Per
subcarrier

()BPSCN

Coded bits
per OFDM

symbol

()CBPSN

Data bits
per OFDM

symbol

()DBPSN

6 BPSK 1/2 1 48 24
Table 15. Rate-dependent parameters: 6 Mbits/s.

Figure 44. SIGNAL_rx port and functional flow.

2. Rx2.11: Cyclic Prefix Removal (SIG)

Component name: SIG_cyclicPrefix_rem

Port design: SIG_cyclicPrefix_rem has a total of 1 input port and 1 output port.

Figure 45 shows the I/O distribution of the component.

Functional design: SIG_cyclicPrefix_rem removes the prefixes (a quarter of the

length of the IFFT time samples) from the input data to retrieve the original time samples

obtained from the transmitter IFFT. This sequence shall be forwarded to SIG_FFT for the

FFT. The functional flow is shown in Figure 45.

Figure 45. SIG_cyclicPrefix_rem port and functional flow.

Rx1:
PPDU_rx

Extract SIGNAL
subframe

Call SIG
processing

Rx2.6:
SIG_conv_dec

Rx2.11:
SIG_cyclicPrefix_rem

Store RATE &
LENGTH

Rx2-O1:
SIG_process_output

Rx2-O2:
SIG_rx_output

Rx2-I2:
SIG_process_input

Rx3:
DATA_rx

Rx2: SIGNAL_rx

Process data ()

Rx2-I1:
SIG_rx_input

Process data ()

Rx2.11-I1:
cyPre_rem_input

Rx2.11-O1:
cyPre_rem_output

Remove the
cyclic prefix

Mark end of
cyclic prefix

Rx2.10:
SIG_FFT

Rx2:
SIGNAL_rx

Rx2.11: SIG_cyclicPrefix_rem

51

3. Rx2.10: FFT (SIG)

Component name: SIG_FFT

Port design: SIG_FFT has 1 input port and 1 output port. Figure 46 shows the I/O

distribution of the component.

Functional design: From SIG_cyclicPrefix_rem, 64 time samples will be sent

through SIG_FFT to convert to 64 frequency samples. The DIT PINO FFT algorithm

shall be described in Chapter V. The functional flow is shown in Figure 46.

Figure 46. SIG_FFT port and functional flow.

4. Rx2.9: Carriers Demapper (SIG)

Component name: SIG_carriers_demap

Port design: SIG_carriers_demap has 1 input port and 1 output port. Figure 47

shows the I/O distribution of the component.

Functional design: SIG_carriers_demap re-indexes the 64 frequency samples (by

removing guard bands as stipulated in the IEEE standard) and retrieves the 52

subcarriers. Four pilot tones are removed before passing the data stream for BPSK

demodulation. The functional flow is shown in Figure 47.

Figure 47. SIG_carriers_demap port and functional flow.

Rx2.11:
SIG_cyclicPrefix_rem

Rx2.10: SIG_FFT

Process data ()

Rx2.10-I1:
FFT_input

Rx2.10-O1:
FFT_output

Convert input to
complex (I/Q) freq

samples

Bit reverssal

DIT PINO
FFT

Rx2.9:
SIG_carriers_demap

Rx2.9: SIG_carriers_demap

Process data ()

Rx2.9-I1:
crDemap_input

Rx2.9-O1:
crDemap_output

Re-index
for BPSK demod

Rx2.10:
SIG_FFT

Remove
pilot tones

Rx2.8:
SIG_BPSK_demod

52

5. Rx2.8: BPSK Demodulator (SIG)

Component name: SIG_BPSK_demod

Port design: SIG_BPSK demod has 1 input port and 1 output port. Figure 48

shows the I/O distribution of the component.

Functional design: The SIGNAL bits are retrieved by using BPSK demodulation.

The 48 frequency subcarriers are demodulated to retrieve the encoded and interleaved

binary data, taking into consideration the normalization factor, MODK (see Table 12). For

BPSK demodulation, MODK is unity. The functional flow is shown in Figure 48.

Figure 48. SIG_BPSK demod port and functional flow.

6. Rx2.7: De-Interleaver (SIG)

Component name: SIG_deinterleaver

Port design: SIG_deinterleaver has 1 input port and 1 output port. Figure 49

shows the I/O distribution of the component.

Functional design: All data bits are passed through a block deinterleaver after

demodulation. The deinterleaver has a block size equals to the number of coded bits in a

single OFDM symbol, CBPSN (see Table 15). The deinterleaver consists of two different

permutations, which is the inverse of the transmitter interleaver described in Chapter III.

Note that j , i and k refer to the index of the coded bit before the first, before the second

and after the second permutation, respectively. Note that max ,1
2
BPSCN

s � �= � �
� �

. Equation 6

and 7 respectively describe the first and second permutations.

 (16) mod , , 0,1, , -1CBPS
CBPS

j j
i s floor j floor s i j k N

s N
� �� �= × + + × =� �� �

� � � �
� (6)

Process data ()

BPSK demod
mapping

Rx2.8-O1:
demod_output

Rx2.7:
SIG_deinterleaver

Rx2.8-I1:
demod_input

Rx2.9:
SIG_carriers_demap

Rx2.8: SIG_BPSK_demod

Normalize
KMOD

53

 16 - (- 1) (16)CBPS
CBPS

i
k i N floor

N
= × × (7)

Figure 49. SIG_deinterleaver port and functional flow.

7. Rx2.6: Convolutional Decoder (SIG)

Component name: SIG_conv_dec

Port design: SIG_conv_dec has 1 input port and 1 output port. Figure 50 shows

the I/O distribution of the component.

Functional design: Viterbi decoding is chosen to decode the stream of

convolutional bits. Since the SIGNAL fields have been coded with a convolutional

encoder of coding rate
1
2

R = , there is no need to insert dummy bits prior decoding.

Details of the Viterbi decoder algorithm are presented in Chapter V. The functional flow

is shown in Figure 50.

Figure 50. SIG_conv_dec port and functional flow.

Process data ()

Rx2.8:
SIG_BPSK_demod 1st permutation Rx2.7-O1:

deinterleaver_output
Rx2.7-I1:

deInterleaver_input

2nd permutation

Rx2.7: SIG_deinterelaver

Rx2.6:
SIG_conv_dec

Process data ()

Rx2.6: SIG_conv_dec

Recover
punctured data Viterbi decoding

initialise_viterbi()

process_viterbi()

Coding rate?

Rx2.6-O1:
convdec_output

R=2/3

Rx2.7:
SIG_deinterleaver

Insert dummy
‘zero’ appropriatelyR=1/2

R=3/4

Rx2.6-I1:
convdec_input

Rx2:
SIGNAL_rx

54

C. DATA

Besides all the components (functionalities) under the SIGNAL subframe,

extracting the PSDU from the DATA subframe requires an additional procedure of

descrambling the decoded bits. Table 16 summarizes the components needed to extract

the PSDU.

Index Component Functions
Rx3 data_rx - receive and send raw data for processing

 - receive and send PSDU data to MAC layer
Rx3.11 data_cyclicprefix_rem - data cyclic prefix removal
Rx3.10 data_FFT - data FFT
Rx3.9 data_carriers_demap - data carriers demapping
Rx3.8 data_demod_map - data demodulation mapping
Rx3.7 data_deinterleaver - data deinterleaving
Rx3.6 data_conv_dec - data dummy insertion

 - data convolutional decoding
Rx3.5 data_tail_replace - not required, encompass in descrambler
Rx3.4 data_descrambler - descramble the raw data

Table 16. IEEE 802.11a Receiver DATA subframe components functionalities.

1. Rx3: DATA Receiver

Component name: DATA_rx

Port design: DATA_rx has a total of 2 input ports and 2 output ports. Figure 51

shows the I/O distribution of the component.

Functional design: DATA_rx is the heart of DATA processing at the PHY layer

where the PSDU are extracted. This is possible by referencing information provided by

RATE and LENGTH fields. From RATE, the modulation type and coding parameters are

determined according to Table 17. The LENGTH field determines the size of PSDU in

the DATA. The functional flow is shown in Figure 51.

Data rate

()Mbits s

Modulation Coding
rate

()R

Coded bits per
subcarrier

()BPSCN

Coded bits per
OFDM symbol

()CBPSN

Data bits per
OFDM symbol

()DBPSN

6 BPSK 1/2 1 48 24
9 BPSK 3/4 1 48 36
12 QPSK 1/2 2 96 48
18 QPSK 3/4 2 96 72
24 16-QAM 1/2 4 192 96
36 16-QAM 3/4 4 192 144
48 64-QAM 2/3 6 288 192
54 64-QAM 3/4 6 288 216

Table 17. Rate-dependent parameters.

55

Figure 51. DATA_map port and functional flow.

2. Rx3.11: Cyclic Prefix Removal (DATA)

Component name: DATA_cyclicPrefix_rem

Port design: DATA_cyclicPrefix_rem has a total of 1 input port and 1 output port.

Figure 52 shows the I/O distribution of the component.

Functional design: DATA_cyclicPrefix_rem removes the prefixes (a quarter of the

length of the IFFT time samples) from the input data to retrieve the original time samples

obtained from the transmitter IFFT. Note that this process is carried out for SYMN

iterations. This sequence shall be forwarded to DATA_FFT component for the FFT. The

functional flow is shown in Figure 52.

Figure 52. DATA_cyclicPrefix_rem port and functional flow.

Rx2:
SIGNAL_rx

Call DATA
processing

Store PSDU
sequence

Rx3-O1:
DATA_processing_

input

Rx3-O2:
DATA_rx

output

Rx3-I2:
DATA_processing_

output

Rx3: DATA_rx

Process data ()

Rx3-I1:
DATA_rx_input

Process control
fields:

RATE, LENGTH

Rx3.0:
DATA_rx_PSDU

Rx3.4:
DATA_descrambler

Rx3.11:
DATA_cyclicPrefix_rem

Process data ()

Rx3.11-I1:
cyPre_rem_input

Rx3.11-O1:
cyPre_rem_output

Remove the
cyclic prefix

Mark end of
cyclic prefix

Rx3.10:
DATA_FFT

Rx3.11: DATA_cyclicPrefix_rem

Rx3:
DATA_rx

iterate
NSYM
times

56

3. Rx3.10: FFT (DATA)

Component name: DATA_ FFT

Port design: DATA_FFT has 1 input port and 1 output port. Figure 53 shows the

I/O distribution of the component.

Functional design: From DATA_ cyclicPrefix_rem, every 64 time samples will be

sent through DATA_FFT to convert to 64 frequency samples. The DIT PINO FFT

algorithm shall be described under Chapter V. Note that this process is carried out for

SYMN iterations. The functional flow is shown in Figure 53.

Figure 53. DATA_FFT port and functional flow.

4. Rx3.9: Carriers Demapper (DATA)

Component name: DATA_carriers_demap

Port design: DATA_carriers_demap has 1 input port and 1 output port. Figure 54

shows the I/O distribution of the component.

Functional design: DATA_carriers_demap re-indexes every 64 frequency

samples (by removing guard bands) and retrieves the 52 subcarriers. Four pilot tones are

also removed for demodulation mapping. Note that this process is carried out for SYMN

iterations. The functional flow is shown in Figure 54.

Figure 54. DATA_carriers_demap port and functional flow.

Rx3.11:
DATA_cyclicPrefix_rem

Rx3.10: DATA_FFT

Process data ()

Rx3.10-I1:
FFT_input

Rx3.10-O1:
FFT_output

Convert input to
complex (I/Q) freq

samples
Bit reverssal

DIT PINO
FFT

Rx3.9:
DATA_carriers_demap

iterate
NSYM
times

Rx3.9: DATA_carriers_demap

Process data ()

Rx3.9-I1:
crDemap_input

Rx3.9-O1:
crDemap_output

Re-index
for demod

Rx3.10:
DATA_FFT

Remove
pilot tones

Rx3.8:
DATA_demod_map

iterate
NSYM
times

57

5. Rx3.8: Demodulation Mapper (DATA)

Component name: DATA_demod_map

Port design: DATA_demod_map has 1 input port and 1 output port. Figure 56

shows the I/O distribution of the component.

Functional design: The DATA OFDM subcarriers are demodulated by using

BPSK, QPSK, 16-QAM, or 64-QAM, depending on the RATE field. The gray-coded

complex constellation points shall be converted to binary input data according to Figure

55. Note that the normalization factor MODK (see Table 12) changes with modulation

scheme to ensure the same average power is achieved for all mappings. The functional

flow is shown in Figure 56.

 I-in Output bits
(b0)

-1 0
BPSK

1 1

 I-in Output bits
(b0)

Q-in Output bits
(b1)

 I-in Output bits
(b0,b1,b2)

Q-in Output bits
(b3,b4,b5)

-1 0 -1 0 -7 000 -7 000
QPSK

1 1 1 1 -5 001 -5 001

 -3 011 -3 011

 I-in Output bits
(b0,b1)

Q-in Output bits
(b2,b3)

 -1 010 -1 010

-3 00 -3 00 1 110 1 110

-1 01 -1 01 3 111 3 111

1 11 1 11 5 101 5 101
16 QAM

3 10 3 10

64 QAM

7 100 7 100

Figure 55. Constellation demodulation mapping.

Figure 56. DATA_demod_map port and functional flow.

Process data ()

Demodulation
mapping

Rx3.8-O1:
demod_output

Rx3.7:
DATA_deinterleaver

Rx3.8-I1:
demod_input

Rx3.9:
DATA_carriers_demap

Rx3.8: DATA_demod_map

Normalize
KMOD

Type of
Modulation?

BPSK /
QPSK /

16 QAM /
64 QAM

BPSK /
QPSK /

16 QAM /
64 QAM

58

6. Rx3.7: De-Interleaver (DATA)

Component name: DATA_deinterleaver

Port design: DATA_deinterleaver has 1 input port and 1 output port. Figure 57

shows the I/O distribution of the component.

Functional design: All data bits are passed through a block deinterleaver after

demodulation. The deinterleaver has a block size equals to the number of coded bits in a

single OFDM symbol, CBPSN (see Table 17). The deinterleaver consists of two different

permutations as described in Section B6. The value s is determined by the number of

coded bits per subcarrier, BPSCN , whereby max ,1
2
BPSCN

s � �= � �
� �

. Note that this process is

carried out for BLOCKN (SYMN) iterations. The functional flow is shown in Figure 57.

Figure 57. DATA_deinterleaver port and functional flow.

7. Rx3.6: Convolutional Decoder (DATA)

Component name: DATA_conv_dec

Port design: DATA_conv_dec has 1 input port and 1 output port. Figure 59 shows

the I/O distribution of the component.

Functional design: Viterbi decoding is chosen to decode the stream of

convolutional bits. The DATA bits have been coded with a convolutional encoder of

coding rate
1
2

R = ,
2
3

, or
3
4

, depending on the data rate (see Table 17). Since higher

rates of
2
3

R = and
3
4

 are derived from
1
2

R = by employing puncturing at the

transmitter, conversely, at the receiver, dummy bits have to be inserted prior to the

Process data ()

Rx3.8:
DATA_demod_map 1st permutation Rx3.7-O1:

deinterleaver_output
Rx3.7-I1:

deInterleaver_input

2nd permutation

Rx3.7: DATA_deinterelaver

Rx3.6:
DATA_conv_dec

Determine
parameter S

iterate
NBLOCK
times

59

decoding. There is no need to insert dummy bits prior to decoding for
1
2

R = . The

dummy bits insertion patterns are illustrated in Figure 58 for
2
3

R = and
3
4

. Details of

the Viterbi decoder algorithm is presented in Chapter V. Note that process_viterbi()

process call is carried out for SYMN iterations. The functional flow is shown in Figure 59.

Insertion pattern: R=3/4

 Received bits A0 B0 A1 B2 A3 B3 A4 B5 A6 B6 A7 B8

 Dummy bits A0 A1 A2 A3 A4 A5 A6 A7 A8
 B0 B1 B2 B3 B4 B5 B6 B7 B8

 Decoded data y0 y1 y2 y3 y4 y5 y6 y7 y8

Insertion pattern: R=2/3

 Received bits A0 B0 A1 A2 B2 A3 A4 B4 A5 A6 B6 A7 A8 B8 A9

 Dummy bits A0 A1 A2 A3 A4 A5 A6 A7 A8 A9
 B0 B1 B2 B3 B4 B5 B6 B7 B8 B9

 Decoded data y0 y1 y2 y3 y4 y5 y6 y7 y8 y9

Figure 58. DATA_conv_dec puncturing patterns.

Figure 59. DATA_conv_dec port and functional flow.

Process data ()

Rx3.6: Data_conv_dec

Recover
punctured data

Viterbi decoding

initialise_viterbi()

process_viterbi()

Coding rate?

Rx3.6-O1:
convdec_output

Rx3.4:
Data_descrambler

R=2/3

Rx3.7:
Data_deinterleaver

Insert dummy
‘zero’ appropriatelyR=1/2

R=3/4 iterate
Nsym
times

Rx3.6-I1:
convdec_input

60

 8. Rx3.5: Tail Replacement (DATA)

This function is subsumed under the descrambler component below.

9. Rx3.4: Descrambler (DATA)

Component name: DATA_descrambler

Port design: DATA_descrambler has 1 input port and 1 output port. Figure 61

shows the I/O distribution of the component.

Functional design: The DATA subframe shall be descrambled by passing through

the same length-127 scrambler as illustrated in Figure 60. The scrambler is set to a

pseudo random non-zero initial state when first applied to the input data. This must be the

same as that being used in the transmitter scrambler to ensure the descrambling process is

synchronized. For the simulation and testing in this thesis research, this pseudo-random

non-zero state has been set to “1011101” as proposed in the test case under Annex G of

IEEE 802.11a standard [3]. The functional flow is shown in Figure 61.

Figure 60. DATA scrambler.

Figure 61. DATA_descrambler port and functional flow.

With an appreciation of the development of the transceiver, the next chapter shall

proceed to touch on the challenges that were experienced during the conduct of the thesis

research.

Process data ()

Rx3.4-I1:
descrambler_input

Rx3.4-O1:
descrambler_output

Rx3:
DATA_rx

Rx3.6:
Data_conv_dec

Rx3.4: DATA_descrambler

raw DATA

X

generator
polynomial

61

V. CHALLENGES

This chapter focuses on the major challenges that were encountered while

developing the IEEE 802.11a PHY layer model. In terms of developing the

functionalities, two complex functions are singled out specifically for discussion. They

are the (inverse) fast Fourier transform (IFFT/FFT) and the Viterbi decoder as described

in Section A below. Being developmental software, OSSIE is still considered in its early

stage of maturity. While the current version is useful and sufficient for modeling the

standard, enhancement will definitely help in fine-tuning and optimizing the performance

of the model. These software and integration challenges are discussed in Section B.

A. SPECIAL INTEREST COMPONENTS

The FFT and IFFT are software algorithms for (inverse) discrete Fourier

transform (DFT/IDFT) that are used to emulate the OFDM capabilities in the standard.

OFDM advocates parallel data transmission scheme that reduces the effect of multipath

fading and prevent the need of complex equalizers at the receiver. The mathematical

details can be obtained from reference [6]. For convolutional decoding, the Viterbi

algorithm is recommended by the IEEE 802.11a standard [3]. Using the concept of a

trellis representation, hard decision decoding with minimum Hamming distance selection

is implemented. Both of the above functions follow closely to the explanation provided in

[7] and are described here.

1. IFFT / FFT

An OFDM transmission system typically consists of three stages each for both the

transmitter and the receiver. This is illustrated in Figure 62. In the transmitter, the serial-

to-parallel (s/p) converter shall prepare a stack of 64 frequency samples (including pilot

tones and guard bands) for the IFFT. Sixty-four time samples are generated and cyclic

prefix shall be inserted to provide redundancy and to mitigate inter-symbol interference

(ISI). Conversely, at the receiver, the cyclic prefix shall be removed prior to the FFT.

Sixty-four time samples are sent through the FFT to obtain 64 frequency samples. The

62

pilot tones and guard bands are removed before passing through the parallel-to-serial

(p/s) converter.

Figure 62. OFDM transmission system: transmitter and receiver.

For a discussion on the DFT, see Chapter 5 of [7]. Two possible types of

algorithms for DFTs are decimation-in-time (DIT) and decimation-in-frequency (DIF).

DIT transforms are based on splitting the DFT into two summations: (1) a decimated time

sequence where even-indexed samples are removed and (2) a decimated time sequence

where odd-indexed samples are removed. Similarly, DIF transforms split the DFT

summation into two summations: (1) a decimated frequency sequence where even-

indexed samples are removed and (2) a decimated frequency sequence where odd-

indexed samples are removed. For the IEEE 802.11a implementation in this research, the

DIT approach is chosen.

If the inputs to either the IFFT or FFT are in natural order, the outputs shall turn

out to be in bit-reversed order. This is known as natural-input-permutated-output (NIPO).

Conversely, if the inputs to the transform are in bit-reversed order, the outputs shall turn

out to be in natural order. This is known as permutated-input-natural-output (PINO). The

PINO implementation is chosen for this thesis to provide a natural output sequence.

The above explains the term DIT PINO IFFT/FFT that has been used to describe

the DFT components in the model. The function flows for both the DATA_IFFT of the

transmitter and the DATA_FFT of the receiver are shown in Figure 63 for comparisons. It

is observed that most of the processes within the components remain the same except that

DIT PINO IFFT is called in DATA_IFFT while DIT PINO FFT is called in DATA_FFT.

The components can be described by three main processes: (1) convert inputs to complex

constellations of I and Q samples, (2) reverse the bits for PINO operations and (3) carry

out either DIT PINO IFFT or DIT PINO FFT.

S/P IFFT
Insert
Cyclic
Prefix

Remove
Cyclic
Prefix

FFT P/S
BIN data

s(t) r(t)
BIN data

63

Figure 63. DATA_IFFT and DATA_FFT functional flows.

a. Real to Complex Conversion

As the inputs to the component are real values, there is a requirement to

convert them to complex values prior to the DFT. By default, complex number arithmetic

is not supported in the included libraries. The header file: complex.h has to be included

before any complex algorithm can be built. The I-channel and Q-channel values shall be

mapped to the real and imaginary parts of the complex number, respectively.

Figure 64. A sample signal flow graph of a DIT PINO FFT.

Rx3.11:
DATA_cyclicPrefix_rem

Rx3.10: DATA_FFT

Process data ()

Rx3.10-I1:
FFT_input

Rx3.10-O1:
FFT_output

Convert input to
complex (I/Q) freq

samples
Bit reverssal

DIT PINO
FFT

Rx3.9:
DATA_carriers_demap

iterate
NSYM
times

x[0]

x[7]

x[1]

x[4]

x[2]

x[6]

x[5]

x[3]

X[0]

X[7]

X[4]

X[1]

X[2]

X[3]

X[5]

X[6]

DIT – even
samples

DIT – odd
samples

Permutated inputs Natural outputs

64

b. Bit Reversal

As explained earlier, PINO is preferred and input bits have to be bit-

reversed prior to IFFT/FFT operations. A sample of the bit-reversed inputs is shown in

Figure 64. Notice that the outputs sequence is in natural order due to such arrangement.

c. DIT PINO DFT

From Figure 64, it is observed that the DFT is implemented by individual

‘butterfly’ patterns. This is the backbone of the IFFT/FFT algorithm. Both the DFT and

inverse DFT are defined in Equation 8 and 9 respectively:

[] []
1

0

N
mn

N
n

X m x n W
−

−

=

=� (8)

[] []
1

0

1 N
mn

N
n

x n X m W
N

−

=
= � (9)

While not going into details of the mathematical operations (see [7] for

derivations), it is important to realize that both the IFFT and FFT algorithms are almost

similar except for the exponent of the NW function and the normalization factor. The

normalization factor for IFFT is equal to the number of samples (64), while that for the

FFT is unity. If we let mn
DFT NW W −= and mn

IDFT NW W= , it can be shown that

() ()Re ReDFT IDFTW W= and () ()Im ImDFT IDFTW W= − . In other words, if θ is the

argument, then the two functions differ as follows:

 () ()DFTW = cos sinjθ θ+ (10)

() ()IDFTW = cos sinjθ θ− (11)

65

2. Viterbi Decoder

The decoder carries out two main functions: (1) inserting the dummy “zero”s and

(2) convolutional decoding using the Viterbi algorithm. The DATA subframe has been

coded with a convolutional encoder of coding rate
1
2

R = ,
2
3

, or
3
4

, depending on the

data rate. The convolutional encoder was described under the transmitter development

earlier. To compensate for encoder puncturing, dummy “zero” bits need to be inserted

into the convolutional decoder in place of the omitted bits. Decoding by the Viterbi

algorithm is preferred, especially for convolutional coding. This sequential functional

flow is shown in Figure 65.

a. Initialise_viterbi()

The Viterbi algorithm with hard decision decoding is based on finding the

shortest Hamming distance by comparing the received data bits with a set of expected

code sequences. A lookup matrix is constructed to assist in the process. For DATA

decoding, the lookup matrix is of size 64 (rows) by 22 (columns). Since the constraint

length is 7, there are six memory elements in the encoder. This will entail a total of 26 =

64 different states in the shift register memories, which translates to 64 rows in the

lookup matrix. The compositions of the 22 columns are provided in Table 18. The lookup

matrix needs to be initialized prior to the decoding process. This is carried out by the

initialise_viterbi() function call as shown in Figure 66.

Figure 65. An example of Viterbi decoder: DATA_conv_dec functional flow.

Process data ()

Rx3.6: Data_conv_dec

Recover
punctured data

Viterbi decoding

initialise_viterbi()

process_viterbi()

Coding rate?

Rx3.6-O1:
convdec_output

Rx3.4:
Data_descrambler

R=2/3

Rx3.7:
Data_deinterleaver

Insert dummy
‘zero’ appropriatelyR=1/2

R=3/4 iterate
Nsym
times

Rx3.6-I1:
convdec_input

66

Column Description Functions
1 … 6 Current_state current 6 left most bits in the shift register
7 … 12 Next_state0 new 6 bits assume input '0'
13 … 18 Next_state1 new 6 bits assume input '1'
19, 20 Conv_output0 convolutional encoder output assume input '0'
21, 22 Conv_output1 convolutional encoder output assume input '1'

Table 18. Viterbi decoding lookup matrix.

Figure 66. initialise_viterbi() functional flow.

b. Process_viterbi()

After the lookup matrix has been initialized, the overall data is divided

into SYMN fixed size bits streams for Viterbi decoding by the process_viterbi() function

call. The process_viterbi() functional flow is shown in Figure 67. It consists of four main

procedures: (1) select the corresponding insertion pattern for specific puncturing code, (2)

initialize the relevant variables, (3) decode using the Viterbi algorithm and (4) make a

decision by selecting the best code sequence. The code sequence is selected based on the

path with the shortest Hamming distance. The actual Viterbi decoding is relatively

complex and involved. It is carried out by the BUTTERFLY_viterbi() subroutine. Looking

at Figure 67, we can deduce that BUTTERFLY_viterbi() will be called a total of

()state iterN N∗ times, which could result in potentially lengthy code. Hence, a type-

defined subroutine BUTTERFLY_viterbi() is defined in the header file: Data_conv_dec.h

to reduce the length of the code.

initialise_viterbi() Form
current_state

iterate
Nstate=64

times
Convert

INT to BIN

Form
next_state

Shift right by 1 bit
and store 5 bits

Insert bit ‘0’ at LSB

Next
State?

Insert bit ‘1’ at LSB

A B C D E F

Store 6 bits

0 A B C D E

Shift right by 1 bit
and store 5 bits

1 A B C D E

Bit ‘0’ Bit ‘1’

Form
Encoder output

Next
State?

encoder
polynomial

x
x

Bit ‘0’

Bit ‘1’

67

Figure 67. process_viterbi() functional flow.

c. BUTTERFLY_viterbi()

The BUTTERFLY_viterbi() functional flow is described in Figure 68. As

shown, the expected next bit (either ‘0’ or ‘1’) determines the location on the lookup

matrix that will be referenced. Dummy bits have been added to compensate for the

puncturing done at the encoder for different code rate, R . These dummy bits shall NOT

influence the Hamming distance for each iteration and, hence, will be ignored. A decision

shall be made to choose the path with the shortest Hamming distance.

Figure 68. BUTTERFLY_viterbi() functional flow.

process_viterbi()

Initialize variables

iterate
Nstate=64

times

Viterbi
decoding

All memories ‘0’,
Initial state = 1

BUTTERFLY_viterbi()

Memories from
previous block,

initial state
depends

Yes

No

Select decoded
code sequence

Select
puncturing

type

dec_type=1 dec_type=2dec_type=0

R=1/2

R=3/4

R=2/3

Hamming matrix Output tracer State table

Is it 1st block?

If iter = 1,
choose initial state

iterate
Niter
times

Store hamming
distance and move

to next iteration

Find shortest
hamming distance

Select
corresponding

output

BUTTERFLY_viterbi()

Next bit?

Bit ‘0’ Bit ‘1’

Store current
hamming distance

Calculate
hamming distance

Puncturing
type?

1 of 3 is
dummy bit

1 of 4 is
dummy bitNo dummy

dec_type=0

dec_type=1

dec_type=2

Compare and
increment

hamming distance

Ignore dummy bit hamming
dist shorter?

Choose this path Original path
remains

NoYes

Reference
Next_state0 and
Conv_output0

Reference
Next_state1 and
Conv_output1

68

After ()state iterN N∗ iterations, the best path will be chosen based on the

shortest Hamming distance. This is the output decoded stream that will be passed to

Data_descrambler component as shown in Figure 65.

B. OTHER CHALLENGES

The challenges posted here are to raise awareness of potential considerations

when coding using OSSIE. The newer version of OSSIE might have tackled the

challenges but the following are with respect to the current version OSSIE 0.5.0.

1. Data Synchronisation (Ports Management)

Great care should be taken when passing parameters between components through

the input and output ports. Handling of a thread between objects must be monitored

closely so that there will not be a conflict in parameters and variables being called, which

can lead to potential logic errors. This is especially critical in the IEEE 802.11a model as

a component can be referenced a few times. For example, in the transmitter, PPDU_map

is called three times to process preamble, SIGNAL and DATA subframes. There are

common variables being used for different functional call, and the sequence of

referencing different processes in the component is critical. The strategy here is to make

use of control functions like lock() and unlock() in the defined object. Using PPDU_map

as an example, the processes flow to maintain data integrity and prevent logic errors in

the process_data() function call is shown in Figure 69.

2. MIMO Components

A typical component usually has a single input and single output (SISO) port

configuration. However, as described above, IEEE 802.11a PHY model does consist of

components with multiple inputs and multiple outputs (MIMO). One good example is

PPDU_map in Figure 69. However, the OSSIE environment requires that each input

(output) port must only be connected to another output (input) port. One must be careful

to ensure same type of variables are passed between two ports of the same connection

and be mindful of the potential logic errors described in Section B1. The table of SISO

and MIMO components with their relevant port types is shown in APPENDIX A to

demonstrate the potential confusion of different port types.

69

Figure 69. PPDU_map MIMO and control functional flow.

3. Control Variables

Control variables are passed between components for the normal functioning of

the model. These parameters can either be global constant parameters or dynamic

parameters that can be modified. For global constants (e.g. number of samples per FFT),

the strategy is to define them in a header file (global_para.h) that can be assessed by all

components. These constants are reproduced in APPENDIX B as a reference. As for

dynamic parameters like RATE and LENGTH fields, these will be passed between

components by prefixing them to the information transmitted as shown in Figure 70.

Figure 70. Transmission of dynamic control variables.

Tx12-O1:
SIG_processing

Tx1:
preamble_map

Store SIGNAL
sequence

Call DATA
processing

Store DATA
sequence

Tx12-O2:
DATA_processing

Tx12-O3:
PPDU frame

Tx12-I3:
DATA_Input

Push_packet ()

Processing.lock ()

Tx12-I2:
SIG_input

Store preamble
sequence

Call SIGNAL
processing

Concatenate
Preamble, SIGNAL

& DATA

Process data ()

Tx2:
SIGNAL_map

Tx3:
DATA_map

Hardware
transmission

Send_data ()

Tx12-I1:
preamble_input

Start_Processing.wait ()

Processing.unlock ()Pushpacker()

Processing.lock ()

Processing.unlock ()Pushpacker()

Processing.lock ()

Processing.unlock ()Pushpacker()

Control
functional calls

Other
components

Component
functional calls

Transmit
component

Receive
component

Control
parameters

Xinformation X information

Control
parameters

70

In this chapter, the major challenges that were encountered while developing the

IEEE 802.11a PHY layer model were described. With the transceiver model developed,

the next phase under the Incremental Development Model is to verify the functionalities

of the various components. The next chapter shall focus on verifying these functionalities

using test cases provided in the IEEE 802.11a standard.

71

VI. VERIFY

A. TRANSMITTER

In this section, functionalities of the transmitter components shall be verified

based on test cases provided in Annex G of the IEEE 802.11a standard [3]. Similar to

previous chapters, the section is broken down into preamble, SIGNAL and DATA

subframes. The example in Annex G consists of ASCII information to be transmitted at a

data rate of 36 Mbits/s and a total PSDU length of 100 octets (i.e. LENGTH = 100). The

test results are divided into two categories: summarized and detailed traces. The

summarized trace is attached in APPENDIX C, which verifies that all components

carried out their functions accordingly. The entire transmitter test passes through 31 I/O

sequential flows, and this is summarized in APPENDIX D. The detailed traces in this

section are described according to (1) the functions of the component, (2) files where the

test results are traced and stored, and (3) evaluation of the test results. All the files

mentioned in this chapter have been included in the reference CD.

1. Preamble

Table 19 summarizes the components and their functions to form the preamble

subframe. The test cases shall demonstrate these specific functions.

Index Component Functions
Tx1 preamble_map - initiate the Tx routine

 - form short training (ST) and long training (LT) sequence
 - send preamble (ST + LT) to PPDU

Tx1.1 short training (ST)
Tx1.1.9 ST_carrier_map - ST carrier mapping
Tx1.1.10 ST_IFFT - ST IFFT
Tx1.2 long training (LT)
Tx1.2.9 LT_carrier_map - LT carrier mapping
Tx1.2.10 LT_IFFT - LT IFFT
Tx1.2.11 LT_cyclicPrefix - LT cyclic prefix append

Table 19. IEEE 802.11a Transmitter preamble subframe components functionalities.

a. Tx1: Preamble Mapping (Assembly Controller)

This component carries out the following functions: (1) initiate the

transmitter routine, (2) form ST and LT sequences, and (3) append the two sequences and

form the preamble subframe. The detailed traces are captured in preamble_map.txt and a

72

summary of the traces are provided in Table 20. The traces show that 52 binary bits are

sent out for processing to form 160 complex samples of ST sequence and follow by

another set of 52 binary bits that are sent out to form 160 complex samples (I and Q

channels) of LT sequence. The final sequence of 320 complex samples forms the

preamble subframe.

No Trace Explanations
1 Processing short training sequence, size:

52
52 pre-defined I/Q real samples are sent out for
processing to form the ST sequence.

2 Complex float pushpacket received, length
160

160 I/Q float samples of ST sequence received
and stored for future transmission.

3 Processing long training sequence, size: 52 52 pre-defined I/Q real samples are sent out for
processing to form the LT sequence

4 Complex float pushpacket received, length
160

160 I/Q float samples of LT sequence received
and stored for future transmission

5 Processing preamble sequence, size: 320
Preamble_append Tx data, Length 320

ST and LT sequences are cascaded and sent to
PPDU_map for future transmission

Table 20. preamble_map detail traces and explanations.

b. Tx1.1.9: Carriers Mapping (ST)

This component carries out the function of carriers mapping on the ST

sequence. The detailed traces are captured in st_carriers_map.txt and a summary of the

traces are provided in Table 21. The traces show that 52 binary bits are received and

carriers-mapped to a size of 64 complex samples for IFFT.

No Trace Explanations
1 Complex short pushpacket received, length

52
52 pre-defined I/Q real samples received

2 Processing ST carrier mapping
ST_carriers_map Tx data, Length 64

Mapped into 64 samples for IFFT

Table 21. ST_carriers_map detail traces and explanations.

c. Tx1.1.10: IFFT (ST)

This component carries out the function of IFFT on the ST sequence. The

detailed traces are captured in st_ifft.txt and a summary of the traces are provided in

Table 22. The traces show that 64 complex samples are received and gone through IFFT

and duplication, to form 160 complex samples.

No Trace Explanations
1 Complex float pushpacket received, length

64
64 pre-defined I/Q float samples received

2 Processing ST IFFT
ST_IFFT Tx data, Length 160

Mapped into 64 time samples after IFFT
Duplicate to form 160 ST sequence

Table 22. ST_IFFT detail traces and explanations.

73

d. Tx1.2.9: Carriers Mapping (LT)

This component carries out the function of carriers mapping on the LT

sequence. The detailed traces are captured in lt_carriers_map.txt and a summary of the

traces are provided in Table 23. The traces show that 52 binary bits are received and

carriers-mapped to a size of 64 complex samples for IFFT.

No Trace Explanations
1 Complex short pushpacket received, length 52 52 pre-defined I/Q real samples received

2 Processing LT carrier mapping
LT_carriers_map Tx data, Length 64

Mapped into 64 samples for IFFT

Table 23. LT_carriers_map detail traces and explanations.

e. Tx1.2.10: IFFT (LT)

This component carries out the function of IFFT on the LT sequence. The

detailed traces are captured in lt_ifft.txt and a summary of the traces are provided in Table

24. The traces show that 64 complex samples are received and gone through IFFT and

duplication, to form 128 complex samples.

No Trace Explanations
1 Complex float pushpacket received, length 64 64 pre-defined I/Q float samples received

2 Processing LT IFFT
LT_IFFT Tx data, Length 128

Mapped into 64 time samples after IFFT
Duplicate to form 128 samples

Table 24. LT_IFFT detail traces and explanations.

f. Tx1.2.11: Cyclic Prefix (LT)

This component carries out the function of appending the cyclic prefix to

the received complex samples. The detailed traces are captured in lt_cyclicprefix.txt and a

summary of the traces are provided in Table 25. The traces show that 128 complex

samples are received and cyclic prefix is appended to form the 160 complex samples of

LT sequence.

No Trace Explanations
1 Complex float pushpacket received, length 128 128 I/Q time samples received

2 Processing cyclic prefix
LT cyclic prefix modulated data, Length 160

Add cyclic prefix to form 160 LT sequence

Table 25. LT_cyclicPrefix detail traces and explanations.

74

2. SIGNAL

Table 26 summarizes the components and their functions to form the SIGNAL

subframe. The test cases shall demonstrate these specific functions.

Index Component Functions
Tx2 header_map

(SIGNAL_map)
 - form SIGNAL (SIG) samples
 - send SIG to PPDU

Tx2.6 SIG_conv_enc - SIG convolutional encoding
Tx2.7 SIG_interleaver - SIG interleaving
Tx2.8 SIG_BPSK_mod - SIG BPSK modulation
Tx2.9 SIG_carriers_map - SIG carriers mapping
Tx2.10 SIG_IFFT - SIG IFFT
Tx2.11 SIG_cyclicprefix - SIG cyclic prefix

Table 26. IEEE 802.11a Transmitter SIGNAL subframe components functionalities.

a. Tx2: SIGNAL Mapping

This component forms the SIGNAL subframe and send the subframe to

PPDU_map. The detailed traces are captured in signal_map.txt and a summary of the

traces are provided in Table 27. The traces show that eight binary control bits are

received to initiate the formation of the SIGNAL subframe. After the processing, the

SIGNAL subframe, together with 16 control bits, are sent to PPDU_map.

No Trace Explanations
1 Real short pushpacket received, length 8 Received control bits from PPDU_map to start

SIGNAL processing
2 Processing Header sequence, size: 24

Processing SIGNAL bits, size: 24
Retrieved RATE and LENGTH information. Form
SIGNAL raw bits and send for processing

3 Complex float pushpacket received, length
80

80 I/Q float samples of SIGNAL subframe
received and stored for future transmission

4 Processing SIGNAL sequence, size: 80
Header_append Tx data, Length 96

16 control bits of RATE and LENGTH appended
to 80 I/Q time samples of SIGNAL subframe

Table 27. SIGNAL_map detail traces and explanations.

b. Tx2.6: Convolutional Encoder (SIG)

This component carries out the function of convolutional encoding for the

SIGNAL field. The detailed traces are captured in sig_conv_enc.txt and a summary of the

traces are provided in Table 28. The traces show that 24 binary bits are received and

encoded to form 48 binary bits.

No Trace Explanations
1 Real short pushpacket received, length 24 24 SIGNAL raw bits received
2 Processing SIG convolution encoding, size: 24

SIG encoded Tx data, Length 48
Encoder R=1/2, hence output 48 encoded bits

Table 28. SIG_conv_enc detail traces and explanations.

75

c. Tx2.7: Interleaver (SIG)

This component carries out the function of interleaving the encoded

SIGNAL field. The detailed traces are captured in sig_interleaver.txt and a summary of

the traces are provided in Table 29. The traces show that 48 binary bits are received and

interleaved to form 48 binary bits.

No Trace Explanations
1 Real short pushpacket received, length 48 48 SIGNAL encoded bits received
2 Processing SIG interleaver, size: 48 48 bits went through two permutations of

interleaving
Table 29. SIG_interleaver detail traces and explanations.

d. Tx2.8: BPSK Modulation (SIG)

This component carries out the function of BPSK modulation on the

interleaved bits. The detailed traces are captured in sig_bpsk_mod.txt and a summary of

the traces are provided in Table 30. The traces show that 48 binary bits are received and

modulated to a size of 48 complex BPSK samples.

No Trace Explanations
1 Real short pushpacket received, length 48 48 SIGNAL interleaved bits received
2 Processing BPSK modulation

SIG modulated data, Length 48
Modulated into 48 BPSK I/Q float samples

Table 30. SIG_BPSK_mod detail traces and explanations.

e. Tx2.9: Carriers Mapping (SIG)

This component carries out the function of carriers mapping on the

SIGNAL field. The detailed traces are captured in sig_carriers_map.txt and a summary

of the traces are provided in Table 31. The traces show that 48 complex samples are

received and carriers-mapped to a size of 64 complex samples for IFFT.

No Trace Explanations
1 Complex float pushpacket received, length 48 48 I/Q float samples received

2 Processing carrier mapping
SIG carriers mapped data, Length 64

Mapped into 64 samples for IFFT

Table 31. SIG_carriers_map detail traces and explanations.

f. Tx2.10: IFFT (SIG)

This component carries out the function of IFFT on the SIGNAL field.

The detailed traces are captured in sig_ifft.txt and a summary of the traces are provided in

76

Table 32. The traces show that 64 complex samples are received and gone through IFFT

to form 64 complex samples.

No Trace Explanations
1 Complex float pushpacket received, length 64 64 I/Q float samples received

2 Processing SIG IFFT
SIG_IFFT Tx data, Length 64

Mapped into 64 time samples after IFFT

Table 32. SIG_IFFT detail traces and explanations.

g. Tx2.11: Cyclic Prefix (SIG)

This component carries out the function of appending the cyclic prefix to

the received complex samples. The detailed traces are captured in sig_cyclicprefix.txt and

a summary of the traces are provided in Table 33. The traces show that 64 complex

samples are received and cyclic prefix is appended to form the 80 complex samples of

SIGNAL subframe.

No Trace Explanations
1 Complex float pushpacket received, length

64
64 I/Q time samples received

2 Processing SIG cyclic prefix
SIG_cyclicPrefix Tx data, Length 80

Add cyclic prefix to form 80 SIGNAL subframe

Table 33. SIG_cyclicPrefix detail traces and explanations.

3. Data

Table 34 summarizes the components and their functions to form the DATA

subframe. The test cases shall demonstrate these specific functions.

Index Component Functions
Tx3 data_map - form time data samples from PSDU

 - send DATA samples to PPDU
Tx3.4 data_scrambler - scramble the raw data
Tx3.5 data_tail_replacement - replace tail with zeroes
Tx3.6 data_conv_enc - data convolutional encoding

 - data puncturing
Tx3.7 data_interleaver - data interleaving
Tx3.8 data_mod_map - data modulation mapping
Tx3.9 data_carriers_map - data carriers mapping
Tx3.10 data_IFFT - data IFFT
Tx3.11 data_cyclicprefix - data cyclic prefix
Tx0 data_PSDU - input PSDU data
Table 34. IEEE 802.11a Transmitter DATA subframe components functionalities.

77

a. Tx3: DATA Mapping

This component forms the DATA subframe and send the subframe to

PPDU_map. The detailed traces are captured in data_map.txt and a summary of the

traces are provided in Table 35. The traces show that 24 binary control bits are received

to initiate the formation of the DATA subframe. After retrieving the PSDU information

bits, the binary bits are sent for processing to form the DATA subframe. The final step

involves sending the 480 complex samples of DATA subframe to PPDU_map.

No Trace Explanations
1 Real short pushpacket received, length 24 Received control bits from PPDU_map to start

DATA processing (include RATE and LENGTH)
2 Activate PSDU processing

Data Tx Bits, Length 24
Activate transfer of PSDU to DATA_map

3 Real short pushpacket received, length 800 800 PSDU raw bits (100 octets) received
4 Send raw data for scrambling

Data Tx Bits, Length 869
864 DATA bits send for processing (PAD bits
added), 5 control bits (CBs) appended

5 Complex float pushpacket received, length
480

480 I/Q DATA time samples received

6 Send processed data to form PPDU
Data_append Tx data, Length 480

Send DATA time samples to PPDU_map

Table 35. DATA_map detail traces and explanations.

b. Tx3.4: Scrambler (DATA)

This component carries out the function of scrambling the DATA field.

The detailed traces are captured in data_scrambler.txt and a summary of the traces are

provided in Table 36. The traces show that 864 binary bits are received and formed 864

scrambled bits. Note that there are five control bits being passed between components.

No Trace Explanations
1 Real short pushpacket received, length 869 864 (and 5 CBs) raw bits received
2 Processing data in the scrambler

Scrambled data Bits, Length 869
864 scrambled bits sent out together with 5
CBs

Table 36. DATA_scrambler detail traces and explanations.

c. Tx3.5: Tail Replacement (DATA)

This component carries out the function of replacing the scrambled tail

bits in the DATA field with non-scrambled “zero” bits. The detailed traces are captured

in data_tail_replace.txt and a summary of the traces are provided in Table 37. The traces

show that 864 scrambled bits are received and formed 864 bits after the tail bits are

replaced. Note that there are five control bits being passed between components.

78

No Trace Explanations
1 Real short pushpacket received, length 869 864 (and 5 CBs) scrambled bits received
2 Processing tail replacement

Tail replaced data Bits, Length 869
864 sent out together with 5 CBs after tail
replacement

Table 37. DATA_tail_replacement detail traces and explanations.

d. Tx3.6: Convolutional Encoder (DATA)

This component carries out the function of convolutional encoding for the

DATA field. The detailed traces are captured in data_conv_enc.txt and a summary of the

traces are provided in Table 38. The traces show that 864 binary bits are received and

encoded with a coding rate of
3
4

 (with puncturing) to form 1152 binary bits. Note that

there are five control bits being passed between components.

No Trace Explanations
1 Real short pushpacket received, length 869 864 bits received
2 Processing Data convolution encoding, size: 864

Puncturing the encoded Data, size: 1152
Data encoded Tx data, Length 1157

36 Mbits/s : coding rate of 3/4, hence 1152
output bits from 864 input bits. 5 CBs added
to the transmitted data

Table 38. DATA_conv_enc detail traces and explanations.

e. Tx3.7: Interleaver (DATA)

This component carries out the function of interleaving the encoded

DATA field. The detailed traces are captured in data_interleaver.txt and a summary of

the traces are provided in Table 39. The traces show that 1152 binary bits are received

and interleaved to form 1152 binary bits. Note that there are five control bits being passed

between components.

No Trace Explanations
1 Real short pushpacket received, length 1157 1152 DATA encoded bits received
2 Processing Data interleaver, size: 1152

Data interleaved Tx bits, Length 1157
1152 bits went through two permutations of
interleaving

Table 39. DATA_interleaver detail traces and explanations.

f. Tx3.8: Modulation Mapping (DATA)

This component carries out the function of 16-QAM modulation on the

interleaved bits. The detailed traces are captured in data_mod_map.txt and a summary of

the traces are provided in Table 40. The traces show that 1152 binary bits are received

79

and modulated to a size of 288 complex 16-QAM samples. Note that there are five

control bits being passed between components.

No Trace Explanations
1 Real short pushpacket received, length 1157 1152 DATA interleaved bits received
2 Processing 16QAM modulation

Data modulated samples, Length 293
36 Mbits/s : 16-QAM modulation, hence
modulated into 288 16-QAM I/Q float samples
with 5 CBs

Table 40. DATA_mod_map detail traces and explanations.

g. Tx3.9: Carriers Mapping (DATA)

This component carries out the function of carriers mapping on the DATA

field. The detailed traces are captured in data_carriers_map.txt and a summary of the

traces are provided in Table 41. The traces show that 288 complex samples are received

and carriers-mapped to a size of 384 complex samples for IFFT. Note that there is only

one control bit being passed between components.

No Trace Explanations
1 Complex float pushpacket received, length

293
288 I/Q float samples received

2 Processing carrier mapping
Data carriers mapped data, Length 385

Mapped into 6 x 64 samples for IFFT with 1 CB.

Table 41. DATA_carriers_map detail traces and explanations.

h. Tx3.10: IFFT (DATA)

This component carries out the function of IFFT on the DATA field. The

detailed traces are captured in data_ifft.txt and a summary of the traces are provided in

Table 42. The traces show that 384 complex samples are received and gone through IFFT

to form 384 complex samples. Note that there is only one control bit being passed

between components.

No Trace Explanations
1 Complex float pushpacket received, length

385
6 x 64 I/Q float samples received

2 Processing DATA IFFT
DATA_IFFT Tx data, Length 385

Mapped into 64 time samples after IFFT (6
iterations), with 1 CB

Table 42. DATA_IFFT detail traces and explanations.

80

i. Tx3.11: Cyclic Prefix (DATA)

This component carries out the function of appending the cyclic prefix to

the received complex samples. The detailed traces are captured in data_cyclicprefix.txt

and a summary of the traces are provided in Table 43. The traces show that 384 complex

samples are received and cyclic prefix is appended to form the 480 complex samples of

DATA subframe.

No Trace Explanations
1 Complex float pushpacket received, length

385
6 x 64 I/Q time samples received

2 Processing Data cyclic prefix
Data_cyclicPrefix Tx data, Length 480

Add cyclic prefix (6 x 16 samples) to form 480
DATA subframe

Table 43. DATA_cyclicPrefix detail traces and explanations.

4. PPDU (Final Concatenation)

The final piece to the transmitter is the function of concatenating the preamble,

SIGNAL and DATA subframes together and form the PPDU frame. This main control is

carried out by PPDU_map component.

a. Tx12: PPDU Mapping

This component forms the PPDU frame from the three subframes. The

detailed traces are captured in PPDU_map.txt and a summary of the traces are provided

in Table 44. The traces show that binary control bits are sent to initiate the formation of

SIGNAL and DATA subframes. The traces also show the retrieval of the preamble,

SIGNAL and DATA subframes. The final PPDU frame consists of 880 complex samples.

No Trace Explanations
1 Complex float pushpacket received, length

320
480 I/Q Preamble time samples received

2 Sent Header control bits
CB Tx data, Length 8

Activate SIGNAL subframe processing

3 Complex float pushpacket received, length
96

80 I/Q SIGNAL time samples received, with 16
CBs (RATE and LENGTH)

4 Sent DATA control bits
CB Tx data, Length 24

Activate DATA subframe processing

5 Complex float pushpacket received, length
480

480 I/Q DATA time samples received

6 Processing PPDU sequence, size: 880 Final PPDU frame of 880 I/Q time samples to be
sent out for transmission

Table 44. PPDU_map detail traces and explanations

81

B. RECEIVER

In this section, functionalities of the receiver components shall be verified. As

annex G in the standard only described the transmitter outputs, receiver components are

tested on their abilities to regenerate the transmitter input data (e.g. the receiver decoder

outputs should be similar to the transmitter encoder input). Similar to the previous

section, this section is broken down into preamble, SIGNAL and DATA subframes, and

the test results are divided into two categories: summarized and detailed traces. The

summarized trace is attached in APPENDIX C. The entire receiver test passes through 20

I/O sequential flows, and this is summarized in APPENDIX D. The detailed traces in this

section are described according to (1) the functions of the component, (2) files where the

test results are traced and stored, and (3) evaluation of the test results. All the files

mentioned in this chapter have been included in the reference CD.

1. Preamble

Table 45 summarizes the components and their functions to remove the preamble

subframe. The test cases shall demonstrate these specific functions.

Index Component Functions
Rx0 Rx_data - received digitized data stream
Rx1 / Rx12 PPDU_rx - extract the required digitized PPDU stream

 - removed preamble from PPDU
 - send stream for header removal

Table 45. IEEE 802.11a Receiver preamble subframe components functionalities.

a. Rx0: Receiver Data (Assembly Controller)

This component simulates the retrieval of digitize data stream. The

detailed traces are captured in rx_data.txt and a summary of the traces are provided in

Table 46. The traces show that 884 complex samples are received.

No Trace Explanations
1 Start PPDU digitized receiver

stream_sizeI = 884, stream_sizeQ = 884
880 time samples received. 4 additional arbitrary
‘noise’ bits prefix to the stream

Table 46. Rx_data detail traces and explanations.

b. Rx1: PPDU Receiver

This component carries out the following functions: (1) extract the

digitized PPDU stream, (2) remove preamble from PPDU, and (3) send stream for

SIGNAL subframe removal. The detailed traces are captured in ppdu_rx.txt and a

82

summary of the traces are provided in Table 47. The traces show that 320 complex

samples belonging to the preamble subframe are extracted from the received samples.

The remaining 560 complex samples are sent out for processing.

No Trace Explanations
1 Removed preamble from PPDU samples

preamble_sizeI = 320, preamble_sizeQ =
320

Proceed to remove the 320 time samples of
Preamble subframe

2 Sent PPDU (preamble removed) samples
PPDU_preamble_removed data, Length
560

560 time samples (SIGNAL + DATA subframes)
ready to be forwarded

Table 47. PPDU_rx detail traces and explanations.

2. SIGNAL

Table 48 summarizes the components and their functions to extract RATE and

LENGTH from SIGNAL subframe. The test cases shall demonstrate these specific

functions.

Index Component Functions
Rx2 Header_rx

(SIGNAL_rx)
 - remove SIG from PPDU
 - send header for processing
 - extract RATE & LENGTH from SIG
 - send received data for processing

Rx2.11 SIG_cyclicprefix_rem - SIG cyclic prefix removal
Rx2.10 SIG_FFT - SIG FFT
Rx2.9 SIG_carriers_demap - SIG carriers demapping
Rx2.8 SIG_BPSK_demod - SIG BPSK demodulation
Rx2.7 SIG_deinterleaver - SIG deinterleaving
Rx2.6 SIG_conv_dec - SIG convolutional decoding

Table 48. IEEE 802.11a Receiver SIGNAL subframe components functionalities.

a. Rx2: SIGNAL Receiver

This component carries out the following functions: (1) remove SIGNAL

from PPDU, (2) send SIGNAL subframe to retrieve RATE and LENGTH, and (3) send

DATA subframe for PSDU retrieval. The detailed traces are captured in header_rx.txt

and a summary of the traces are provided in Table 49. The traces show that 560 complex

samples are received and 80 complex samples belonging to SIGNAL subframe are sent

for processing to retrieve the RATE and LENGTH information bits. The remaining 480

complex samples belonging to DATA subframe are sent out together with five control

bits.

83

No Trace Explanations
1 Complex float pushpacket received, length

560
560 I/Q samples (SIGNAL + DATA subframes)
received

2 Sent SIG time samples for processing ...
Header removed data output, Length 80

80 I/Q samples of SIGNAL subframe sent for
processing

3 Real short pushpacket received, length 24
Processing Data sequence, rate: 36
Mbits/s, length: 100 octets

24 single stream of SIGNAL bits received,
RATE= 36 Mbits/s; LENGTH=100 extracted

4 Send raw data for decoding
Header removed data output, Length 485

480 DATA I/Q time samples sent for processing,
with 5 CBs

Table 49. SIGNAL_rx detail traces and explanations.

b. Rx2.11: Cyclic Prefix Removal (SIG)

This component carries out the function of removing the cyclic prefix

from the SIGNAL subframe. The detailed traces are captured in sig_cyclicprefix_rem.txt

and a summary of the traces are provided in Table 50. The traces show that 80 complex

samples are received and cyclic prefix is removed to form the 64 complex samples.

No Trace Explanations
1 Complex float pushpacket received, length

80
80 I/Q SIGNAL time samples received

2 Processing SIG cyclic prefix remove
SIG_cyclicPrefix_rem Tx data, Length 64

64 I/Q time samples extracted for FFT

Table 50. SIG_cyclicPrefix_rem detail traces and explanations.

c. Rx2.10: FFT (SIG)

This component carries out the function of FFT on the SIGNAL subframe.

The detailed traces are captured in sig_fft.txt and a summary of the traces are provided in

Table 51. The traces show that 64 complex samples are received and gone through FFT

to form 64 complex samples.

No Trace Explanations
1 Complex float pushpacket received, length

64
64 I/Q float samples received

2 Processing SIG FFT
SIG_FFT Tx data, Length 64

Mapped into 64 complex subcarriers after FFT

Table 51. SIG_FFT detail traces and explanations.

d. Rx2.9: Carriers Demapper (SIG)

This component carries out the function of carriers demapping on the

SIGNAL subframe. The detailed traces are captured in sig_carriers_demap.txt and a

84

summary of the traces are provided in Table 52. The traces show that 64 complex

samples are received and carriers-demapped to a size of 48 complex samples.

No Trace Explanations
1 Complex float pushpacket received, length

64
64 I/Q subcarriers received

2 Processing carrier demapping
SIG carriers demapped data, Length 48

Mapped into 48 complex constellations for BPSK
demodulation

Table 52. SIG_carriers_demap detail traces and explanations.

e. Rx2.8: BPSK Demodulator (SIG)

This component carries out the function of BPSK demodulation on the

complex samples. The detailed traces are captured in sig_bpsk_demod.txt and a summary

of the traces are provided in Table 53. The traces show that 48 complex samples are

received and demodulated to a size of 48 binary bits.

No Trace Explanations
1 Complex float pushpacket received, length 48 48 BPSK I/Q float samples received
2 Processing SIG BPSK demodulation

SIG demodulated data, Length 48
Demodulated into 48 serial bits

Table 53. SIG_BPSK_demod detail traces and explanations.

f. Rx2.7: De-Interleaver (SIG)

This component carries out the function of deinterleaving the demodulated

SIGNAL field. The detailed traces are captured in sig_deinterleaver.txt and a summary of

the traces are provided in Table 54. The traces show that 48 binary bits are received and

deinterleaved to form 48 binary bits.

No Trace Explanations
1 Real short pushpacket received, length 48 48 SIGNAL demodulated bits received
2 Processing SIG deinterleaver, size: 48

SIG deinterleaved Tx data, Length 48
48 bits went through two permutations of
deinterleaving

Table 54. SIG_deinterleaver detail traces and explanations.

g. Rx2.6: Convolutional Decoder (SIG)

This component carries out the function of convolutional decoding on the

SIGNAL field. The detailed traces are captured in sig_conv_dec.txt and a summary of the

traces are provided in Table 55. The traces show that 48 binary bits are received and

decoded to form 24 binary bits.

85

No Trace Explanations
1 Real short pushpacket received, length 48 48 SIGNAL bits received for decoding
2 Processing SIG convolution decoding, size: 48

return from initialise viterbi
return from process viterbi
SIG decoded Tx data, Length 24

Show bits went through initialize_viterbi() and
process_viterbi(). 24 bits produced at end of
decoding.

Table 55. SIG_conv_dec detail traces and explanations.

3. Data

Table 56 summarizes the components and their functions to retrieve PSDU from

the DATA subframe. The test cases shall demonstrate these specific functions.

Index Component Functions
Rx3 data_rx - receive and send raw data for processing

 - receive and send PSDU data to MAC layer
Rx3.11 data_cyclicprefix_rem - data cyclic prefix removal
Rx3.10 data_FFT - data FFT
Rx3.9 data_carriers_demap - data carriers demapping
Rx3.8 data_demod_map - data demodulation mapping
Rx3.7 data_deinterleaver - data deinterleaving
Rx3.6 data_conv_dec - data dummy insertion

 - data convolutional decoding
Rx3.5 data_tail_replace - not required, encompass in descrambler
Rx3.4 data_descrambler - descramble the raw data

Table 56. IEEE 802.11a Receiver DATA subframe components functionalities.

a. Rx3: DATA Receiver

This component carries out the functions of sending the DATA subframe

for processing and retrieving the PSDU information bits. The detailed traces are captured

in data_rx.txt and a summary of the traces are provided in Table 57. The traces show that

480 complex samples are sent for processing and 864 binary bits belonging to DATA

field are received. The 800 PSDU information bits are sent out together with a control bit.

No Trace Explanations
1 Complex float pushpacket received, length

485
480 I/Q samples (DATA subframes) received,
with 5 CBs

2 Sent raw data for processing ...
Data output, Length 485

480 I/Q samples of DATA subframe sent for
processing, with 5 CBs

3 Real short pushpacket received, length 864 864 DATA bits received (including PAD bits)
4 Send PSDU data to MAC layer ...

PSDU Data output, Length 801
800 PSDU bits sent out, including 1 bit of
LENGTH field

Table 57. DATA_rx detail traces and explanations.

86

b. Rx3.11: Cyclic Prefix Removal (DATA)

This component carries out the function of removing the cyclic prefix

from the DATA subframe. The detailed traces are captured in data_cyclicprefix_rem.txt

and a summary of the traces are provided in Table 58. The traces show that 480 complex

samples are received and cyclic prefix is removed to form the 384 complex samples.

Note that there are five control bits being passed between components.

No Trace Explanations
1 Complex float pushpacket received, length

485
480 I/Q DATA time samples received, with 5 CBs

2 Processing Data cyclic prefix remove
Data_cyclicPrefix_rem Tx data, Length 389

6 x 64 I/Q time samples extracted for FFT, with 5
CBs

Table 58. DATA_cyclicPrefix_rem detail traces and explanations.

c. Rx3.10: FFT (DATA)

This component carries out the function of FFT on the DATA subframe.

The detailed traces are captured in data_fft.txt and a summary of the traces are provided

in Table 59. The traces show that 384 complex samples are received and gone through

FFT to form 384 complex samples. Note that there are five control bits being passed

between components.

No Trace Explanations
1 Complex float pushpacket received, length

389
6 x 64 I/Q float samples received, with 5 CBs

2 Processing DATA FFT
DATA_FFT Tx data, Length 389

Mapped into 6 x 64 complex subcarriers after
FFT, with 5 CBs

Table 59. DATA_FFT detail traces and explanations.

d. Rx3.9: Carriers Demapper (DATA)

This component carries out the function of carriers demapping on the

DATA subframe. The detailed traces are captured in data_carriers_demap.txt and a

summary of the traces are provided in Table 60. The traces show that 384 complex

samples are received and carriers-demapped to a size of 288 complex samples. Note that

there are five control bits being passed between components.

No Trace Explanations
1 Complex float pushpacket received, length

389
6 x 64 I/Q subcarriers received, with 5 CBs

2 Processing data carrier demapping
Data carriers demapped data, Length 293

Mapped into 6 x 48 complex constellations for
demodulation, with 5 CBs

Table 60. DATA_carriers_demap detail traces and explanations.

87

 e. Rx3.8: Demodulation Mapper (DATA)

This component carries out the function of 16-QAM demodulation on the

complex samples. The detailed traces are captured in data_demod_map.txt and a

summary of the traces are provided in Table 61. The traces show that 288 complex

samples are received and demodulated to a size of 1152 binary bits. Note that there are

five control bits being passed between components.

No Trace Explanations
1 Complex float pushpacket received, length 293 6 x 48 I/Q float samples received, with 5 CBs
2 Processing Data demodulation

Conduct 16QAM demodulation
Data demodulated data, Length 1157

16-QAM demodulation carried out
Demodulated into (288 x 2 x 2) 1152 serial
bits, with 5 CBs

Table 61. DATA_demod_map detail traces and explanations.

f. Rx3.7: De-Interleaver (DATA)

This component carries out the function of deinterleaving the demodulated

DATA field. The detailed traces are captured in data_deinterleaver.txt and a summary of

the traces are provided in Table 62. The traces show that 1152 binary bits are received

and deinterleaved to form 1152 binary bits. Note that there are five control bits being

passed between components.

No Trace Explanations
1 Real short pushpacket received, length 1157 1152 DATA demodulated bits received
2 Processing Data deinterleaver

Data deinterleaved Tx data, Length 1157
1152 bits went through two permutations of
deinterleaving, excluding 5 CBs

Table 62. DATA_deinterleaver detail traces and explanations.

g. Rx3.6: Convolutional Decoder (DATA)

This component carries out the function of convolutional decoding on the

DATA field. The detailed traces are captured in data_conv_dec.txt and a summary of the

traces are provided in Table 63. The traces show that 1152 binary bits are received and

decoded to form 864 binary bits. Note that there are five control bits being passed

between components.

No Trace Explanations
1 Real short pushpacket received, length 1157 1152 DATA bits received
2 Processing DATA convolution decoding

return from initialise viterbi
return from process viterbi
DATA decoded Tx data, Length 869

Show bits went through initialize_viterbi() and
process_viterbi(). 864 bits obtained at end of
dummy insertion and decoding, with 5 CBs

Table 63. DATA_conv_dec detail traces and explanations.

88

h. Rx3.4: Descrambler (DATA)

This component carries out the function of descrambling the DATA bits.

The detailed traces are captured in data_descrambler.txt and a summary of the traces are

provided in Table 64. The traces show that 869 binary bits are received and formed 864

descrambled bits.

No Trace Explanations
1 Real short pushpacket received, length 869 864 DATA bits received after decoding
2 Processing data in the descrambler

Descrambled data Bits, Length 864
864 DATA bits descrambled (including PAD
bits)

Table 64. DATA_descrambler detail traces and explanations.

In this chapter, the functionalities of the transmitter and receiver OSSIE models

have been verified using test cases provided in the IEEE 802.11a standard. With this

success in mind, the next chapter shall conclude the thesis research and provide

recommendations for further research.

89

VII. CONCLUSION

A. SUMMARY

Software defined radio has been the emerging trend of radio design both in the

commercial and military arena. Wireless LAN standards like IEEE 802.11a have been

among the popular physical means of data transmission. This thesis lays the groundwork

for implementing an IEEE 802.11a standard using open source software for SDR design.

Critical functionalities at the Physical layer have been implemented and the convenience

and flexibilities of using software to implement a popular radio standard as compared to

expensive and rigid radio implementation using hardware components demonstrated.

In this thesis, we have successfully met the objectives defined in Chapter I:

1. The IEEE 802.11a PHY layer transmitter has been built using a total of 23

OSSIE components with 12 different functionalities and 31 sequential I/O processes.

Correspondingly, the receiver is implemented using 18 components with 12 different

functionalities and 20 sequential I/O processes.

2. All these components have been designed with modularity and flexibility in

mind so that they contribute to the pool of components for future radio design. Most of

the functionalities reside in the process_data() functional call within the component C++

file for standardization and ease of debugging. “Readme” files are also included in each

component’s directory to explain its I/O data types, functionalities and assumptions.

Appropriate parameters can be modified easily for use in other transceivers. All the files

mentioned in this research have been included in the reference CD.

3. With the design implemented fully in OWD environment, the SDR conforms to

Software Communications Architecture (SCA) and the Common Object Request Broker

Architecture (CORBA). This will ensure flexibility, performance and maximum potential

for software module reuse.

4. Using the test cases provided in Annex G of the IEEE 802.11a standard

document, all the components have been verified to provide the necessary functionalities

expected of them.

90

OSSIE, being developmental software, has yet to release its full version. Most of

the efforts from the OSSIE developers are channeled to fix bugs and enhance the

software, rather then using the software to develop communications standards. This thesis

leverages on the capabilities of the software, adapts it to a popular communication

standard and advances OSSIE capabilities by demonstrating that such a marriage can be

implemented with an integration of OSSIE components into a working waveform.

The Incremental Development Model was chosen for this thesis, which is

comprised of three stages: Design, Develop and Verify. The advantage of this model is its

incremental nature, which allows the developer to learn from earlier versions of the

system and enhance the subsequent design. It provides a systematic approach of meeting

the objectives of the thesis by adding verified components into the library and eventually

forming the final product.

B. RECOMMENDATIONS

The software components developed here shall serve as a baseline to link up with

other software or hardware components to implement a fully functional IEEE 802.11a

transceiver. For this to happen, the following are potential areas to address in order to

implement such a functional transceiver:

a) Map up the hardware resources needed such as the type of General Purpose

Processor (GPP) or Field Programmable Gate Array (FPGA) to implement

the functions of the components. The Universal Software Radio Peripheral

(USRP) board is a hardware option to be considered as part of the RF front

end and is a low cost and high-speed hardware component suitable to

implement research-based software radio applications. A good reference is a

course project setup by Virginia Tech that utilizes USRP and OSSIE to

implement a SDR receiver [8].

b) Synchronization of the receiver for packets detection. As this research is done

at baseband, it will be interesting to observe its performance in the 5GHz

carrier frequencies range for the IEEE 802.11a standard. These filtering and

synchronizing functions at higher frequencies would most likely be

91

implemented using hardware, but the possibilities of extending the software

capabilities to the RF front end should also be considered.

c) Presence of channel noise and multi-path fading may lead to amplitude and

phase errors in the received signals. The model needs to be modified to

compensate for such perturbations. One proposal is to consider the use of

diversity SDR receiver with central combiner

With the potential of implementing a fully functional radio standard, the follow

up could be to use the developed components to test out the channel performances like

Bit Error Rates (BER). Since the SDR is supposed to be modular and reconfigurable, its

ability to be flexible in a dynamically changing environment can be further explored by

changing parameters like the information bit rates in real time.

Academically, collaboration and research with Virginia Tech can be enhanced

with this family of components. The experiences and development carried out in this

thesis can also be exemplified for SDR education and training.

92

THIS PAGE INTENTIONALLY LEFT BLANK

93

A
PP

E
N

D
IX

 A
: I

E
E

E
 8

02
.1

1A
 C

O
M

PO
N

E
N

T
S

PO
R

T
 T

Y
PE

S

A
.

T
R

A
N

SM
IT

T
E

R

In
de

x
C

om
po

ne
nt

I/O
 ty

pe
P

or
t n

am
e

P
or

t t
yp

e
P

or
t n

am
e

P
or

t t
yp

e
P

or
t n

am
e

P
or

t t
yp

e
P

or
t n

am
e

P
or

t t
yp

e
P

or
t n

am
e

P
or

t t
yp

e
P

or
t n

am
e

P
or

t t
yp

e

T
x1

pr
ea

m
bl

e_
m

ap
M

IM
O

T
x1

-O
1

C
S

T
x1

-I
1

C
F

T
x1

-O
2

C
S

T
x1

-I
2

C
F

T
x1

-O
3

C
F

T
x1

.1
T

x1
.1

.9
S

T
_c

ar
ri

er
_m

ap
S

IS
O

T
x1

.1
.9

-I1
C

S
Tx

1.
1.

9-
O

1
C

F
T

x1
.1

.1
0

S
T

_I
FF

T
S

IS
O

T
x1

.1
.1

0-
I1

C
F

T
x1

.1
.1

0-
O

1
C

F
T

x1
.2

T
x1

.2
.9

LT
_c

ar
ri

er
_m

ap
S

IS
O

T
x1

.2
.9

-I1
C

S
Tx

1.
2.

9-
O

1
C

F
T

x1
.2

.1
0

LT
_I

FF
T

S
IS

O
T

x1
.2

.1
0-

I1
C

F
T

x1
.2

.1
0-

O
1

C
F

T
x1

.2
.1

1
LT

_c
yc

lic
P

re
fix

S
IS

O
T

x1
.2

.1
1-

I1
C

F
T

x1
.2

.1
1-

O
1

C
F

T
x2

he
ad

er
_m

ap
M

IM
O

T
x2

-I
1

R
S

Tx
2-

O
1

R
S

T
x2

-I
2

C
F

Tx
2-

O
2

C
F

T
x2

.6
S

IG
_c

on
v_

en
c

S
IS

O
T

x2
.6

-I
1

R
S

Tx
2.

6-
O

1
R

S
T

x2
.7

S
IG

_i
nt

er
le

av
er

S
IS

O
T

x2
.7

-I
1

R
S

Tx
2.

7-
O

1
R

S
T

x2
.8

S
IG

_B
P

S
K

_m
od

S
IS

O
T

x2
.8

-I
1

R
S

Tx
2.

8-
O

1
C

F
T

x2
.9

S
IG

_c
ar

ri
er

s_
m

ap
S

IS
O

T
x2

.9
-I

1
C

F
Tx

2.
9-

O
1

C
F

T
x2

.1
0

S
IG

_I
FF

T
S

IS
O

T
x2

.1
0-

I1
C

F
Tx

2.
10

-O
1

C
F

T
x2

.1
1

S
IG

_c
yc

lic
pr

ef
ix

S
IS

O
T

x2
.1

1-
I1

C
F

Tx
2.

11
-O

1
C

F

T
x3

da
ta

_m
ap

M
IM

O
T

x3
-I

1
C

F
Tx

3-
O

1
R

S
T

x3
-I

2
R

S
Tx

3-
O

2
R

S
Tx

3-
I3

C
F

T
x3

-O
3

C
F

T
x3

.4
da

ta
_s

cr
am

bl
er

S
IS

O
T

x3
.4

-I
1

R
S

Tx
3.

4-
O

1
R

S
T

x3
.5

da
ta

_t
ai

l_
re

pl
ac

em
en

t
S

IS
O

T
x3

.5
-I

1
R

S
Tx

3.
5-

O
1

R
S

T
x3

.6
da

ta
_c

on
v_

en
c

S
IS

O
T

x3
.6

-I
1

R
S

Tx
3.

6-
O

1
R

S
T

x3
.7

da
ta

_i
nt

er
le

av
er

S
IS

O
T

x3
.7

-I
1

R
S

Tx
3.

7-
O

1
R

S
T

x3
.8

da
ta

_m
od

_m
ap

S
IS

O
T

x3
.8

-I
1

R
S

Tx
3.

8-
O

1
C

F
T

x3
.9

da
ta

_c
ar

ri
er

s_
m

ap
S

IS
O

T
x3

.9
-I

1
C

F
Tx

3.
9-

O
1

C
F

T
x3

.1
0

da
ta

_I
FF

T
S

IS
O

T
x3

.1
0-

I1
C

F
Tx

3.
10

-O
1

C
F

T
x3

.1
1

da
ta

_c
yc

lic
pr

ef
ix

S
IS

O
T

x3
.1

1-
I1

C
F

Tx
3.

11
-O

1
C

F
T

x1
2

P
P

D
U

_m
ap

M
IM

O
T

x1
2-

I1
C

F
Tx

12
-O

1
R

S
T

x1
2-

I2
C

F
Tx

12
-O

2
C

F
Tx

12
-I3

C
F

T
x1

2-
O

3
C

F
T

x0
da

ta
_P

S
D

U
S

IS
O

T
x0

-I
1

R
S

Tx
0-

O
1

R
S

Le
ge

nd
:

R
S

 (r
ea

l s
ho

rt
):

 s
in

gl
e

st
re

am
, i

nt
eg

er
C

S
 (c

om
pl

ex
 s

ho
rt

):
 d

ua
l I

/Q
 c

ha
nn

el
s,

 in
te

ge
r

C
F

(c
om

pl
ex

 fl
oa

t)
: d

ua
l I

/Q
 c

ha
nn

el
s,

 fl
oa

t

D
A

T
A

 s
ub

fra
m

e

sh
or

t t
ra

in
in

g
(S

T
)

lo
ng

 tr
ai

ni
ng

 (L
T

)

P
re

am
bl

e
su

bf
ra

m
e

S
IG

N
A

L
su

bf
ra

m
e

94

 B
.

R
E

C
E

IV
E

R

In
de

x
C

om
po

ne
nt

I/O
 ty

pe
P

or
t n

am
e

P
or

t t
yp

e
P

or
t n

am
e

P
or

t t
yp

e
P

or
t n

am
e

P
or

t t
yp

e
P

or
t n

am
e

P
or

t t
yp

e

R
x0

R
x_

da
ta

S
IS

O
R

x0
-I

1
C

F
R

x0
-O

1
C

F
R

x1
 /

R
x1

2
P

P
D

U
_r

x
S

IS
O

R
x1

-I
1

C
F

R
x1

-O
1

C
F

R
x2

H
ea

de
r_

rx
M

IM
O

R
x2

-I
1

C
F

R
x2

-O
1

C
F

R
x2

-I2
R

S
R

x2
-O

2
C

F
R

x2
.1

1
S

IG
_c

yc
lic

pr
ef

ix
_r

em
S

IS
O

R
x2

.1
1-

I1
C

F
R

x2
.1

1-
O

1
C

F
R

x2
.1

0
S

IG
_F

FT
S

IS
O

R
x2

.1
0-

I1
C

F
R

x2
.1

0-
O

1
C

F
R

x2
.9

S
IG

_c
ar

ri
er

s_
de

m
ap

S
IS

O
R

x2
.9

-I
1

C
F

R
x2

.9
-O

1
C

F
R

x2
.8

S
IG

_B
P

S
K

_d
em

od
S

IS
O

R
x2

.8
-I

1
C

F
R

x2
.8

-O
1

R
S

R
x2

.7
S

IG
_d

ei
nt

er
le

av
er

S
IS

O
R

x2
.7

-I
1

R
S

R
x2

.7
-O

1
R

S
R

x2
.6

S
IG

_c
on

v_
de

c
S

IS
O

R
x2

.6
-I

1
R

S
R

x2
.6

-O
1

R
S

R
x3

da
ta

_r
x

M
IM

O
R

x3
-I

1
C

F
R

x3
-O

1
C

F
R

x3
-I2

R
S

R
x3

-O
2

R
S

R
x3

.1
1

da
ta

_c
yc

lic
pr

ef
ix

_r
em

S
IS

O
R

x3
.1

1-
I1

C
F

R
x3

.1
1-

O
1

C
F

R
x3

.1
0

da
ta

_F
FT

S
IS

O
R

x3
.1

0-
I1

C
F

R
x3

.1
0-

O
1

C
F

R
x3

.9
da

ta
_c

ar
ri

er
s_

de
m

ap
S

IS
O

R
x3

.9
-I

1
C

F
R

x3
.9

-O
1

C
F

R
x3

.8
da

ta
_d

em
od

_m
ap

S
IS

O
R

x3
.8

-I
1

C
F

R
x3

.8
-O

1
R

S
R

x3
.7

da
ta

_d
ei

nt
er

le
av

er
S

IS
O

R
x3

.7
-I

1
R

S
R

x3
.7

-O
1

R
S

R
x3

.6
da

ta
_c

on
v_

de
c

S
IS

O
R

x3
.6

-I
1

R
S

R
x3

.6
-O

1
R

S
R

x3
.5

da
ta

_t
ai

l_
re

pl
ac

e
S

IS
O

R
x3

.5
-I

1
R

S
R

x3
.5

-O
1

R
S

R
x3

.4
da

ta
_d

es
cr

am
bl

er
S

IS
O

R
x3

.4
-I

1
R

S
R

x3
.4

-O
1

R
S

R
x3

.0
da

ta
_P

S
D

U
S

IS
O

R
x3

.0
-I

1
R

S
R

x0
-O

1
R

S

Le
ge

nd
:

R
S

 (r
ea

l s
ho

rt
):

 s
in

gl
e

st
re

am
, i

nt
eg

er
C

F
(c

om
pl

ex
 fl

oa
t)

: d
ua

l I
/Q

 c
ha

nn
el

s,
 fl

oa
t

D
A

TA
 s

ub
fra

m
e

P
re

am
bl

e
su

bf
ra

m
e

S
IG

N
A

L
su

bf
ra

m
e

95

APPENDIX B: GLOBAL PARAMETERS

/**

This file lists all the global constants referenced in the OSSIE
IEEE 802.11a Transceiver Design.

**/

/* Transmitter control parameters */
const float Fsym = 20.0; // OFDM symbol frequency spacing (20 MHz)
const float Fsub = Fsym / 64.0; // OFDM symbol subcarrier freq spacing (20MHz/64)
const float Tifft = 1.0 / Fsub; // IFFT / FFT period (3.2 micro-second)
const float Tshort = 10.0*Tifft/4.0; // short training sequence duration (8 micro-second)
const float Tgi2 = Tifft/2.0; // training symbol GI duration (1.6 micro-second)
const float Tlong = Tgi2 + 2.0*Tifft; // long training sequence duration (8 micro-second)
const float Tpreamble = Tshort + Tlong; // PLCP preamble duration (16 micro-second)
const float Tcp = Tifft/4.0; // cyclic prefix for header (0.8 micro-second)
const float Theader = Tifft+ Tcp; // PLCP header duration (4 micro-second)
const float Tsample = 1.0 / Fsym; // sample period (0.05 micro-second)
const float null=0.0;

const int octet=8; // size of an octet
const int Nrb = 4; // no. of RATE bits
const int Nlb = 12; // no. of LENGTH bits
const int Ntb = 6; // no. of TAIL bits
const int Nsb = 24; // no. of SIGNAL bits
const int Nserb = 16; // no. of SERVICE bits
const int Nscrb = 7; // no. of syn descramble bits
const int RES=0; // reserve for future use
const int Nsd = 48; // no. of data subcarriers
const int Nsp = 4; // no. of pilot subcarriers
const int Nst = Nsd + Nsp; // no. of total subcarriers
const int Ntr = 52; // no. of bits per training symbol
const int guard_len = 12; // total guard band carriers
const int ifft_len = Nst + guard_len; // total OFDM IFFT length
const int num_samples = ifft_len; // no. of sub_carriers
const int cb_length = 8; // length of control bits
const int cp_len_DATA = ifft_len/4; // DATA and SIG cyclic prefix length
const int cp_len_preamble = ifft_len/2; // Preamble cyclic prefix length

/* Receiver control parameters */
const float Fsym = 20.0; // OFDM symbol frequency spacing (20 MHz)
const float Fsub = Fsym / 64.0; // OFDM symbol subcarrier freq spacing (20MHz/64)
const float Tifft = 1.0 / Fsub; // IFFT / FFT period (3.2 micro-second)
const float Tcp = Tifft/4.0; // cyclic prefix (0.8 micro-second)
const float Theader = Tifft+ Tcp; // PLCP header duration (4 micro-second)
const float Tsample = 1.0 / Fsym; // sample period (0.05 micro-second)
const float null = 0.0;

const int octet=8;
const int Nrb = 4; // no. of RATE bits
const int Nlb = 12; // no. of LENGTH bits
const int Ntb = 6; // no. of TAIL bits
const int Nsb = 24; // no. of SIGNAL bits
const int Nserb = 16; // no. of SERVICE bits
const int Nscrb = 7; // no. of syn descramble bits (7 bits)
const int Nsd = 48; // no. of data subcarriers
const int Nsp = 4; // no. of pilot subcarriers
const int Nst = Nsd + Nsp; // no. of total subcarriers
const int guard_len = 12; // total guard band carriers
const int fft_len = Nst + guard_len; // total OFDM IFFT length
const int cp_len = fft_len/4; // cyclic prefix length
const int num_samples = fft_len; // no. of sub_carriers
const int Nsr=6; // no. of shift registers

96

THIS PAGE INTENTIONALLY LEFT BLANK

97

APPENDIX C: SUMMARIZED TRACE

A. TRANSMITTER

Welcome to OSSIE simulation: 802.11a PPDU transmission

Start process data function
Processing short training sequence, size: 52
Tx training data, Length 52

Start ST_carriers_map function

Complex short pushpacket received, length 52
Processing ST carrier mapping
ST_carriers_map Tx data, Length 64

Start ST_IFFT function

Complex float pushpacket received, length 64
Processing ST IFFT
IFFT time output (Magnitude), Length 64
ST_IFFT Tx data, Length 160

Start Preamble_append function

Complex float pushpacket received, length 160
Processing short training sequence storage, size: 160
Processing long training sequence, size: 52
Tx training data, Length 52

Start LT_carriers_map function

Complex short pushpacket received, length 52
Processing LT carrier mapping
LT_carriers_map Tx data, Length 64

Start LT_IFFT function

Complex float pushpacket received, length 64
Processing LT IFFT
IFFT time output (Magnitude), Length 64
LT_IFFT Tx data, Length 128

Start LT_cyclicPrefix function

Complex float pushpacket received, length 128
Processing cyclic prefix
LT cyclic prefix modulated data, Length 160
LT_cyclicPrefix Tx data, Length 160

Start Preamble_append function

Complex float pushpacket received, length 160
Processing long training sequence storage, size: 160
Processing preamble sequence, size: 320
Preamble_append Tx data, Length 320

Start PPDU_append function

Complex float pushpacket received, length 320
Processing Preamble sequence, size: 320
Sent Header control bits
CB Tx data, Length 8

Start SIGNAL_mapping function

Real short pushpacket received, length 8

98

Processing Header sequence, size: 24
Enter the Rate of the data bits: (Mbit/s) 36
Enter the no. of PSDU Octets to be transmitted: 100
Processing SIGNAL bits, size: 24
SIG Bits, Length 24

Start SIGNAL_encoding function

Real short pushpacket received, length 24
Processing SIG convolution encoding, size: 24
SIG encoded Tx data, Length 48

Start SIGNAL_interleaver function

Real short pushpacket received, length 48
Processing SIG interleaver, size: 48
SIG interleaved Tx data, Length 48

Start SIG_modulation function

Real short pushpacket received, length 48
Processing BPSK modulation
SIG modulated data, Length 48

Start SIG_carriers_map function

Complex float pushpacket received, length 48
Processing carrier mapping
SIG carriers mapped data, Length 64

Start SIG_IFFT function

Complex float pushpacket received, length 64
Processing SIG IFFT
IFFT time output (Magnitude), Length 64
SIG_IFFT Tx data, Length 64

Start SIG_cyclicPrefix function

Complex float pushpacket received, length 64
Processing SIG cyclic prefix
SIG_cyclicPrefix Tx data, Length 80

Start SIGNAL_append function

Complex float pushpacket received, length 80
Processing SIGNAL sequence, size: 80
Header_append Tx data, Length 96

Start PPDU_append function

Complex float pushpacket received, length 96
Processing Header sequence, size: 96
Sent DATA control bits
CB Tx data, Length 24

Start Data_mapping function

Real short pushpacket received, length 24
Processing Data sequence, rate: 36 Mbit/s, length: 100 octets
Activate PSDU processing
Data Tx Bits, Length 24

Start Data_PSDU function

Real short pushpacket received, length 24
Start PSDU retrieval
PSDU Tx Bits, Length 800

Start Data_mapping function

99

Real short pushpacket received, length 800
Retrieve PSDU data
Append and form raw data packet
Send raw data for scrambling
Data Tx Bits, Length 869

Start Data_scrambler function

Real short pushpacket received, length 869
Processing data in the scrambler
Scrambled data Bits, Length 869

Start Data_tail_replacement function

Real short pushpacket received, length 869
Processing tail replacement
Tail replaced data Bits, Length 869

Start Data_encoding function

Real short pushpacket received, length 869
Processing Data convolution encoding, size: 864
Puncturing the encoded Data, size: 1152
Data encoded Tx data, Length 1157

Start Data_interleaver function

Real short pushpacket received, length 1157
Processing Data interleaver, size: 1152
Data interleaved Tx bits, Length 1157

Start Data_modulation function

Real short pushpacket received, length 1157
Processing data modulation
Data modulated samples, Length 293

Start Data_carriers_map function

Complex float pushpacket received, length 293
Processing carrier mapping
Data carriers mapped data, Length 385

Start Data_IFFT function

Complex float pushpacket received, length 385
Processing Data IFFT
IFFT time output (Magnitude), Length 384
Data_IFFT Tx data, Length 385

Start Data_cyclicPrefix function

Complex float pushpacket received, length 385
Processing Data cyclic prefix
Data_cyclicPrefix Tx data, Length 480

Start Data_append function

Complex float pushpacket received, length 480
Retrieve processed Data samples
Send processed data to form PPDU
Data_append Tx data, Length 480

Start PPDU_append function

Complex float pushpacket received, length 480
Processing Data sequence, size: 480
Processing PPDU sequence, size: 880
PPDU octect 0: 0.0459988 + 0.0459988j; -0.132444 + 0.00233959j; -0.0134727 + -0.0785248j;
0.142755 + -0.0126512j; 0.0919975 + 6.18545e-09j; 0.142755 + -0.0126512j; -0.0134727 + -
0.0785248j; -0.132444 + 0.00233958j;

100

PPDU octect 1: 0.0459988 + 0.0459988j; 0.0023396 + -0.132444j; -0.0785248 + -0.0134727j;
-0.0126512 + 0.142755j; 4.31489e-09 + 0.0919975j; -0.0126512 + 0.142755j; -0.0785248 + -
0.0134727j; 0.00233958 + -0.132444j;
PPDU octect 2: 0.0459988 + 0.0459988j; -0.132444 + 0.00233959j; -0.0134727 + -0.0785248j;
0.142755 + -0.0126512j; 0.0919975 + 6.18545e-09j; 0.142755 + -0.0126512j; -0.0134727 + -
0.0785248j; -0.132444 + 0.00233958j;
PPDU octect 3: 0.0459988 + 0.0459988j; 0.0023396 + -0.132444j; -0.0785248 + -0.0134727j;
-0.0126512 + 0.142755j; 4.31489e-09 + 0.0919975j; -0.0126512 + 0.142755j; -0.0785248 + -
0.0134727j; 0.00233958 + -0.132444j;
PPDU octect 4: 0.0459988 + 0.0459988j; -0.132444 + 0.00233959j; -0.0134727 + -0.0785248j;
0.142755 + -0.0126512j; 0.0919975 + 6.18545e-09j; 0.142755 + -0.0126512j; -0.0134727 + -
0.0785248j; -0.132444 + 0.00233958j;
PPDU octect 5: 0.0459988 + 0.0459988j; 0.0023396 + -0.132444j; -0.0785248 + -0.0134727j;
-0.0126512 + 0.142755j; 4.31489e-09 + 0.0919975j; -0.0126512 + 0.142755j; -0.0785248 + -
0.0134727j; 0.00233958 + -0.132444j;
PPDU octect 6: 0.0459988 + 0.0459988j; -0.132444 + 0.00233959j; -0.0134727 + -0.0785248j;
0.142755 + -0.0126512j; 0.0919975 + 6.18545e-09j; 0.142755 + -0.0126512j; -0.0134727 + -
0.0785248j; -0.132444 + 0.00233958j;
PPDU octect 7: 0.0459988 + 0.0459988j; 0.0023396 + -0.132444j; -0.0785248 + -0.0134727j;
-0.0126512 + 0.142755j; 4.31489e-09 + 0.0919975j; -0.0126512 + 0.142755j; -0.0785248 + -
0.0134727j; 0.00233958 + -0.132444j;
PPDU octect 8: 0.0459988 + 0.0459988j; -0.132444 + 0.00233959j; -0.0134727 + -0.0785248j;
0.142755 + -0.0126512j; 0.0919975 + 6.18545e-09j; 0.142755 + -0.0126512j; -0.0134727 + -
0.0785248j; -0.132444 + 0.00233958j;
PPDU octect 9: 0.0459988 + 0.0459988j; 0.0023396 + -0.132444j; -0.0785248 + -0.0134727j;
-0.0126512 + 0.142755j; 4.31489e-09 + 0.0919975j; -0.0126512 + 0.142755j; -0.0785248 + -
0.0134727j; 0.00233958 + -0.132444j;
PPDU octect 10: 0.0459988 + 0.0459988j; -0.132444 + 0.00233959j; -0.0134727 + -
0.0785248j; 0.142755 + -0.0126512j; 0.0919975 + 6.18545e-09j; 0.142755 + -0.0126512j; -
0.0134727 + -0.0785248j; -0.132444 + 0.00233958j;
PPDU octect 11: 0.0459988 + 0.0459988j; 0.0023396 + -0.132444j; -0.0785248 + -0.0134727j;
-0.0126512 + 0.142755j; 4.31489e-09 + 0.0919975j; -0.0126512 + 0.142755j; -0.0785248 + -
0.0134727j; 0.00233958 + -0.132444j;
PPDU octect 12: 0.0459988 + 0.0459988j; -0.132444 + 0.00233959j; -0.0134727 + -
0.0785248j; 0.142755 + -0.0126512j; 0.0919975 + 6.18545e-09j; 0.142755 + -0.0126512j; -
0.0134727 + -0.0785248j; -0.132444 + 0.00233958j;
PPDU octect 13: 0.0459988 + 0.0459988j; 0.0023396 + -0.132444j; -0.0785248 + -0.0134727j;
-0.0126512 + 0.142755j; 4.31489e-09 + 0.0919975j; -0.0126512 + 0.142755j; -0.0785248 + -
0.0134727j; 0.00233958 + -0.132444j;
PPDU octect 14: 0.0459988 + 0.0459988j; -0.132444 + 0.00233959j; -0.0134727 + -
0.0785248j; 0.142755 + -0.0126512j; 0.0919975 + 6.18545e-09j; 0.142755 + -0.0126512j; -
0.0134727 + -0.0785248j; -0.132444 + 0.00233958j;
PPDU octect 15: 0.0459988 + 0.0459988j; 0.0023396 + -0.132444j; -0.0785248 + -0.0134727j;
-0.0126512 + 0.142755j; 4.31489e-09 + 0.0919975j; -0.0126512 + 0.142755j; -0.0785248 + -
0.0134727j; 0.00233958 + -0.132444j;
PPDU octect 16: 0.0459988 + 0.0459988j; -0.132444 + 0.00233959j; -0.0134727 + -
0.0785248j; 0.142755 + -0.0126512j; 0.0919975 + 6.18545e-09j; 0.142755 + -0.0126512j; -
0.0134727 + -0.0785248j; -0.132444 + 0.00233958j;
PPDU octect 17: 0.0459988 + 0.0459988j; 0.0023396 + -0.132444j; -0.0785248 + -0.0134727j;
-0.0126512 + 0.142755j; 4.31489e-09 + 0.0919975j; -0.0126512 + 0.142755j; -0.0785248 + -
0.0134727j; 0.00233958 + -0.132444j;
PPDU octect 18: 0.0459988 + 0.0459988j; -0.132444 + 0.00233959j; -0.0134727 + -
0.0785248j; 0.142755 + -0.0126512j; 0.0919975 + 6.18545e-09j; 0.142755 + -0.0126512j; -
0.0134727 + -0.0785248j; -0.132444 + 0.00233958j;
PPDU octect 19: 0.0459988 + 0.0459988j; 0.0023396 + -0.132444j; -0.0785248 + -0.0134727j;
-0.0126512 + 0.142755j; 4.31489e-09 + 0.0919975j; -0.0126512 + 0.142755j; -0.0785248 + -
0.0134727j; 0.00233958 + -0.132444j;
PPDU octect 20: -0.15625 + 0j; 0.0122846 + -0.0975996j; 0.0917165 + -0.105872j; -
0.0918875 + -0.115129j; -0.00280594 + -0.0537743j; 0.0750737 + 0.0740404j; -0.127324 +
0.0205014j; -0.121887 + 0.0165662j;
PPDU octect 21: -0.0350413 + 0.150888j; -0.0564551 + 0.0218039j; -0.0603101 + -
0.0812861j; 0.0695568 + -0.014122j; 0.0822183 + -0.0923565j; -0.131263 + -0.0652272j; -
0.0572063 + -0.0392986j; 0.0369179 + -0.0983441j;
PPDU octect 22: 0.0625 + 0.0625j; 0.119239 + 0.0040956j; -0.0224832 + -0.160657j;
0.0586688 + 0.014939j; 0.0244759 + 0.0585318j; -0.136805 + 0.0473798j; 0.000988971 +
0.115005j; 0.0533377 + -0.00407633j;
PPDU octect 23: 0.0975412 + 0.0258883j; -0.038316 + 0.106171j; -0.115131 + 0.0551805j;
0.0598238 + 0.0877067j; 0.0211118 + -0.0278859j; 0.0968318 + -0.0827979j; 0.0397497 +
0.111158j; -0.00512124 + 0.120325j;

101

PPDU octect 24: 0.15625 + 0j; -0.00512125 + -0.120325j; 0.0397497 + -0.111158j; 0.0968319
+ 0.0827979j; 0.0211118 + 0.0278859j; 0.0598238 + -0.0877068j; -0.115131 + -0.0551805j; -
0.038316 + -0.106171j;
PPDU octect 25: 0.0975412 + -0.0258883j; 0.0533377 + 0.00407635j; 0.000988968 + -
0.115005j; -0.136805 + -0.0473798j; 0.0244759 + -0.0585318j; 0.0586688 + -0.014939j; -
0.0224832 + 0.160657j; 0.119239 + -0.00409556j;
PPDU octect 26: 0.0625 + -0.0625j; 0.0369179 + 0.0983441j; -0.0572063 + 0.0392986j; -
0.131263 + 0.0652272j; 0.0822183 + 0.0923565j; 0.0695568 + 0.014122j; -0.0603101 +
0.0812861j; -0.0564551 + -0.0218039j;
PPDU octect 27: -0.0350412 + -0.150888j; -0.121887 + -0.0165662j; -0.127324 + -
0.0205014j; 0.0750737 + -0.0740404j; -0.00280595 + 0.0537742j; -0.0918875 + 0.115129j;
0.0917165 + 0.105872j; 0.0122846 + 0.0975995j;
PPDU octect 28: -0.15625 + 0j; 0.0122846 + -0.0975996j; 0.0917165 + -0.105872j; -
0.0918875 + -0.115129j; -0.00280594 + -0.0537743j; 0.0750737 + 0.0740404j; -0.127324 +
0.0205014j; -0.121887 + 0.0165662j;
PPDU octect 29: -0.0350413 + 0.150888j; -0.0564551 + 0.0218039j; -0.0603101 + -
0.0812861j; 0.0695568 + -0.014122j; 0.0822183 + -0.0923565j; -0.131263 + -0.0652272j; -
0.0572063 + -0.0392986j; 0.0369179 + -0.0983441j;
PPDU octect 30: 0.0625 + 0.0625j; 0.119239 + 0.0040956j; -0.0224832 + -0.160657j;
0.0586688 + 0.014939j; 0.0244759 + 0.0585318j; -0.136805 + 0.0473798j; 0.000988971 +
0.115005j; 0.0533377 + -0.00407633j;
PPDU octect 31: 0.0975412 + 0.0258883j; -0.038316 + 0.106171j; -0.115131 + 0.0551805j;
0.0598238 + 0.0877067j; 0.0211118 + -0.0278859j; 0.0968318 + -0.0827979j; 0.0397497 +
0.111158j; -0.00512124 + 0.120325j;
PPDU octect 32: 0.15625 + 0j; -0.00512125 + -0.120325j; 0.0397497 + -0.111158j; 0.0968319
+ 0.0827979j; 0.0211118 + 0.0278859j; 0.0598238 + -0.0877068j; -0.115131 + -0.0551805j; -
0.038316 + -0.106171j;
PPDU octect 33: 0.0975412 + -0.0258883j; 0.0533377 + 0.00407635j; 0.000988968 + -
0.115005j; -0.136805 + -0.0473798j; 0.0244759 + -0.0585318j; 0.0586688 + -0.014939j; -
0.0224832 + 0.160657j; 0.119239 + -0.00409556j;
PPDU octect 34: 0.0625 + -0.0625j; 0.0369179 + 0.0983441j; -0.0572063 + 0.0392986j; -
0.131263 + 0.0652272j; 0.0822183 + 0.0923565j; 0.0695568 + 0.014122j; -0.0603101 +
0.0812861j; -0.0564551 + -0.0218039j;
PPDU octect 35: -0.0350412 + -0.150888j; -0.121887 + -0.0165662j; -0.127324 + -
0.0205014j; 0.0750737 + -0.0740404j; -0.00280595 + 0.0537742j; -0.0918875 + 0.115129j;
0.0917165 + 0.105872j; 0.0122846 + 0.0975995j;
PPDU octect 36: -0.15625 + 0j; 0.0122846 + -0.0975996j; 0.0917165 + -0.105872j; -
0.0918875 + -0.115129j; -0.00280594 + -0.0537743j; 0.0750737 + 0.0740404j; -0.127324 +
0.0205014j; -0.121887 + 0.0165662j;
PPDU octect 37: -0.0350413 + 0.150888j; -0.0564551 + 0.0218039j; -0.0603101 + -
0.0812861j; 0.0695568 + -0.014122j; 0.0822183 + -0.0923565j; -0.131263 + -0.0652272j; -
0.0572063 + -0.0392986j; 0.0369179 + -0.0983441j;
PPDU octect 38: 0.0625 + 0.0625j; 0.119239 + 0.0040956j; -0.0224832 + -0.160657j;
0.0586688 + 0.014939j; 0.0244759 + 0.0585318j; -0.136805 + 0.0473798j; 0.000988971 +
0.115005j; 0.0533377 + -0.00407633j;
PPDU octect 39: 0.0975412 + 0.0258883j; -0.038316 + 0.106171j; -0.115131 + 0.0551805j;
0.0598238 + 0.0877067j; 0.0211118 + -0.0278859j; 0.0968318 + -0.0827979j; 0.0397497 +
0.111158j; -0.00512124 + 0.120325j;
PPDU octect 40: 0.0625 + 0j; 0.0330338 + -0.0438527j; -0.00196556 + -0.037627j; -
0.0809046 + 0.0844305j; 0.00677414 + -0.100151j; -0.00124631 + -0.113302j; -0.0211465 + -
0.00464019j; 0.135693 + -0.10469j;
PPDU octect 41: 0.0975413 + -0.0441942j; 0.0112075 + -0.00183259j; -0.0327044 +
0.0440799j; -0.0604833 + 0.124227j; 0.0101382 + 0.0966019j; 0.000441049 + -0.00776956j;
0.0183601 + -0.0825037j; -0.0692837 + 0.0267335j;
PPDU octect 42: -0.21875 + 0j; -0.0692838 + -0.0267335j; 0.0183601 + 0.0825037j;
0.000441058 + 0.00776954j; 0.0101382 + -0.0966019j; -0.0604833 + -0.124227j; -0.0327044 +
-0.04408j; 0.0112075 + 0.00183258j;
PPDU octect 43: 0.0975413 + 0.0441942j; 0.135693 + 0.10469j; -0.0211466 + 0.00464019j; -
0.00124632 + 0.113302j; 0.00677412 + 0.100151j; -0.0809046 + -0.0844305j; -0.00196555 +
0.037627j; 0.0330337 + 0.0438527j;
PPDU octect 44: 0.0625 + 0j; 0.0572128 + 0.0524973j; 0.0155139 + 0.173851j; 0.0354616 +
0.115564j; -0.0509683 + -0.201625j; 0.0107812 + 0.0359063j; 0.0892584 + 0.208513j; -
0.0485137 + -0.00788796j;
PPDU octect 45: -0.0350413 + 0.0441942j; 0.0170981 + -0.058969j; 0.0529809 + -0.0169834j;
0.0987838 + 0.100154j; 0.034056 + -0.148379j; -0.00283341 + -0.0940129j; -0.120297 +
0.0419507j; -0.136448 + -0.0698656j;
PPDU octect 46: -0.03125 + 0j; -0.136448 + 0.0698656j; -0.120297 + -0.0419508j; -
0.0028334 + 0.0940129j; 0.0340559 + 0.148379j; 0.0987838 + -0.100154j; 0.0529809 +
0.0169834j; 0.0170981 + 0.058969j;

102

PPDU octect 47: -0.0350413 + -0.0441942j; -0.0485138 + 0.00788795j; 0.0892585 + -
0.208513j; 0.0107813 + -0.0359063j; -0.0509683 + 0.201625j; 0.0354616 + -0.115564j;
0.0155138 + -0.173851j; 0.0572128 + -0.0524973j;
PPDU octect 48: 0.0625 + 0j; 0.0330338 + -0.0438527j; -0.00196556 + -0.037627j; -
0.0809046 + 0.0844305j; 0.00677414 + -0.100151j; -0.00124631 + -0.113302j; -0.0211465 + -
0.00464019j; 0.135693 + -0.10469j;
PPDU octect 49: 0.0975413 + -0.0441942j; 0.0112075 + -0.00183259j; -0.0327044 +
0.0440799j; -0.0604833 + 0.124227j; 0.0101382 + 0.0966019j; 0.000441049 + -0.00776956j;
0.0183601 + -0.0825037j; -0.0692837 + 0.0267335j;
PPDU octect 50: -0.0592927 + 0.100425j; 0.00409242 + 0.0139711j; 0.0109037 + -0.100262j;
-0.0969928 + -0.0203457j; 0.0621235 + 0.08138j; 0.123595 + 0.138917j; 0.104256 + -
0.0150552j; 0.172935 + -0.139791j;
PPDU octect 51: -0.0395934 + 0.00585377j; -0.133488 + 0.00892884j; -0.00158766 + -
0.0432846j; -0.0472771 + 0.0921656j; -0.109013 + 0.0817054j; -0.0239633 + 0.0104072j;
0.0964961 + 0.0185489j; 0.0191099 + -0.0225715j;
PPDU octect 52: -0.0873354 + -0.0494106j; 0.00234121 + 0.0581253j; -0.0210441 +
0.228457j; -0.102889 + 0.0228245j; -0.0192593 + -0.175154j; 0.0178246 + 0.131774j; -
0.0710194 + 0.16038j; -0.15319 + -0.0619258j;
PPDU octect 53: -0.107073 + 0.0278859j; 0.055435 + 0.140018j; 0.069911 + 0.102684j; -
0.0555579 + 0.0249016j; -0.0427567 + 0.00162033j; 0.0156848 + -0.118058j; 0.0255435 + -
0.0712484j; 0.0332799 + 0.177229j;
PPDU octect 54: 0.0197642 + -0.0213679j; 0.0353311 + -0.0884221j; -0.00812379 +
0.100698j; -0.0349064 + -0.00964246j; 0.0646485 + 0.0304234j; 0.0924734 + -0.0338842j;
0.0319434 + -0.122535j; -0.0175289 + 0.0916916j;
PPDU octect 55: 6.49395e-05 + -0.00585376j; -0.00622475 + -0.0561029j; -0.019328 +
0.0397577j; 0.0532 + -0.131378j; 0.021769 + -0.132811j; 0.104157 + -0.0317j; 0.162671 + -
0.0445116j; -0.10486 + -0.029587j;
PPDU octect 56: -0.110307 + -0.0691748j; -0.00773789 + -0.0918839j; -0.0492151 + -
0.0428284j; 0.0847025 + -0.0172379j; 0.0901296 + 0.0633508j; 0.01488 + 0.153376j;
0.0486094 + 0.0938087j; 0.011148 + 0.0339775j;
PPDU octect 57: -0.0115127 + 0.0116426j; -0.0152419 + -0.0173805j; -0.0605729 +
0.0310065j; -0.0701968 + -0.0403441j; 0.0114148 + -0.108628j; 0.03707 + -0.0599709j; -
0.00321576 + -0.177502j; -0.00720509 + -0.128079j;
PPDU octect 58: -0.0592927 + 0.100425j; 0.00409242 + 0.0139711j; 0.0109037 + -0.100262j;
-0.0969928 + -0.0203457j; 0.0621235 + 0.08138j; 0.123595 + 0.138917j; 0.104256 + -
0.0150552j; 0.172935 + -0.139791j;
PPDU octect 59: -0.0395934 + 0.00585377j; -0.133488 + 0.00892884j; -0.00158766 + -
0.0432846j; -0.0472771 + 0.0921656j; -0.109013 + 0.0817054j; -0.0239633 + 0.0104072j;
0.0964961 + 0.0185489j; 0.0191099 + -0.0225715j;
PPDU octect 60: -0.0296464 + 0.0806606j; -0.0963844 + -0.0450347j; -0.1102 + 0.00288139j;
-0.0700095 + 0.215747j; -0.0396332 + 0.0593958j; 0.00997518 + -0.0555177j; 0.0337749 +
0.0652693j; 0.11684 + 0.0332285j;
PPDU octect 61: 0.0779988 + -0.133198j; -0.0427866 + -0.146173j; 0.158107 + -0.0705024j;
0.253711 + -0.0210639j; 0.067816 + 0.116981j; -0.0441807 + 0.114255j; -0.0354926 +
0.0410436j; 0.0845137 + 0.0701878j;
PPDU octect 62: 0.120189 + 0.00988212j; 0.0573284 + 0.0546368j; 0.0632006 + 0.187834j;
0.0906149 + 0.149391j; -0.0165717 + -0.0393876j; -0.0775449 + -0.0749532j; 0.0494644 +
0.0792623j; -0.0139247 + -0.00728012j;
PPDU octect 63: 0.0302837 + -0.0273135j; 0.080169 + 0.0537303j; -0.185944 + -0.0667172j;
-0.0386776 + -0.0274393j; 0.0430363 + -0.0718034j; -0.0919199 + -0.089421j; 0.0290079 +
0.105391j; -0.144236 + 0.0033899j;
PPDU octect 64: -0.0691748 + -0.0411321j; 0.131827 + 0.0566497j; -0.126439 + 0.0697465j;
-0.0308446 + 0.108688j; 0.160616 + -0.00928296j; 0.0555444 + -0.0462641j; -0.00366729 +
0.0278459j; -0.0492698 + 0.000149147j;
PPDU octect 65: -0.0779988 + -0.00515146j; 0.0145183 + -0.0870846j; 0.148909 + -
0.103997j; -0.0212099 + -0.0514882j; -0.154066 + -0.106397j; 0.02395 + 0.0303362j;
0.0463352 + 0.122983j; -0.00377208 + -0.0983907j;
PPDU octect 66: -0.0608964 + -0.128468j; -0.0236949 + -0.0380531j; 0.0664307 + -
0.0484323j; -0.0671134 + 0.0266201j; 0.0537023 + -0.0502537j; 0.170927 + -0.0486926j; -
0.107523 + 0.132273j; -0.161486 + -0.0194366j;
PPDU octect 67: -0.0698122 + -0.0715077j; -0.176879 + 0.0491159j; -0.172178 + -
0.0498698j; 0.0512337 + -0.0746361j; 0.122271 + -0.0573664j; 0.00915009 + -0.0437585j; -
0.0118996 + -0.0206696j; 0.00363008 + 0.00856091j;
PPDU octect 68: -0.0296464 + 0.0806606j; -0.0963844 + -0.0450347j; -0.1102 + 0.00288139j;
-0.0700095 + 0.215747j; -0.0396332 + 0.0593958j; 0.00997518 + -0.0555177j; 0.0337749 +
0.0652693j; 0.11684 + 0.0332285j;
PPDU octect 69: 0.0779988 + -0.133198j; -0.0427866 + -0.146173j; 0.158107 + -0.0705024j;
0.253711 + -0.0210639j; 0.067816 + 0.116981j; -0.0441807 + 0.114255j; -0.0354926 +
0.0410436j; 0.0845137 + 0.0701878j;

103

PPDU octect 70: -0.118585 + 0.0114858j; -0.0994333 + -0.047962j; 0.0536084 + -0.196079j;
0.123994 + 0.0345825j; 0.0919315 + 0.0449895j; -0.036786 + -0.0658418j; -0.0211003 + -
0.00387933j; 0.0424973 + -0.0649011j;
PPDU octect 71: 0.0611289 + 0.0482766j; 0.0463064 + 0.00417344j; -0.0628931 + -
0.0452457j; -0.101784 + 0.152274j; -0.0392474 + -0.0187027j; -0.00526792 + -0.106066j;
0.0827078 + 0.0305796j; 0.225664 + 0.0276615j;
PPDU octect 72: 0.139953 + -0.00988211j; -0.132354 + -0.0329092j; -0.116179 + 0.0883309j;
0.0227295 + 0.0518396j; -0.171248 + -0.0803886j; -0.245748 + -0.0245908j; -0.0624398 + -
0.0379207j; -0.0549765 + -0.06221j;
PPDU octect 73: -0.00395256 + -0.0598542j; 0.0338285 + -1.12667e-05j; -0.0302122 +
0.0214911j; 0.0747573 + -0.121648j; 0.04317 + -0.0796105j; -0.0224231 + 0.0414547j;
0.0263911 + 0.0131129j; -0.03097 + -0.0184544j;
PPDU octect 74: 0.0592927 + 0.00827848j; 0.108935 + 0.0779861j; 0.00206425 + 0.101085j; -
0.0158528 + 0.0540659j; -0.059185 + 0.0702049j; 0.0168651 + 0.114138j; 0.103643 + -
0.0339088j; -0.0242415 + -0.0589005j;
PPDU octect 75: -0.0808932 + 0.0505445j; -0.0402822 + -0.0687858j; -0.0685797 +
0.0580919j; -0.067265 + 0.117231j; 0.00650102 + -0.131225j; 0.00858317 + 0.0280095j;
0.075177 + 0.116767j; 0.117563 + 0.0296694j;
PPDU octect 76: -0.0411321 + 0.148232j; 0.00497321 + 0.0976094j; 0.0257738 + 0.00186785j;
-0.115934 + 0.0446468j; -0.0196118 + 0.0837796j; 0.100749 + 0.00625553j; 0.20549 + -
0.0640454j; 0.0729341 + -0.0633013j;
PPDU octect 77: -0.173926 + -0.118024j; -0.0241854 + 0.0258011j; -0.040753 + 0.128572j; -
0.0420396 + -0.0534839j; 0.14769 + -0.126218j; -0.0299877 + -0.0492609j; -0.0145844 + -
0.0207055j; 0.0891527 + -0.0690722j;
PPDU octect 78: -0.118585 + 0.0114858j; -0.0994333 + -0.047962j; 0.0536084 + -0.196079j;
0.123994 + 0.0345825j; 0.0919315 + 0.0449895j; -0.036786 + -0.0658418j; -0.0211003 + -
0.00387933j; 0.0424973 + -0.0649011j;
PPDU octect 79: 0.0611289 + 0.0482766j; 0.0463064 + 0.00417344j; -0.0628931 + -
0.0452457j; -0.101784 + 0.152274j; -0.0392474 + -0.0187027j; -0.00526792 + -0.106066j;
0.0827078 + 0.0305796j; 0.225664 + 0.0276615j;
PPDU octect 80: 0.0296464 + -0.120189j; 0.0340277 + -0.142461j; 0.00366307 + -0.0123123j;
0.12597 + -0.0429729j; 0.0545228 + 0.0680213j; -0.0196314 + 0.0772427j; 0.00787072 + -
0.0556209j; -0.0343327 + 0.0461655j;
PPDU octect 81: -0.0396692 + -0.133825j; -0.056498 + -0.131124j; 0.0143079 + 0.0966673j;
0.0448767 + -0.00858707j; -0.112614 + -0.17049j; -0.065255 + -0.229676j; 0.0651514 + -
0.0114664j; 0.011351 + 0.047573j;
PPDU octect 82: -0.0905427 + -0.0592927j; -0.109871 + 0.024421j; 0.0738487 + -0.0343458j;
0.124333 + 0.0215448j; -0.0371767 + 0.0707535j; 0.0153654 + 0.00152866j; 0.0280382 +
0.099403j; -0.0620882 + 0.0682245j;
PPDU octect 83: 0.0639476 + 0.0162325j; 0.0781643 + 0.156022j; 0.00886139 + 0.219155j;
0.146588 + 0.0238822j; 0.105724 + 0.0303761j; -0.0804061 + 0.142788j; -0.048684 + -
0.0996885j; -0.0360851 + -0.0822708j;
PPDU octect 84: -0.0889391 + 0.0213679j; -0.0700184 + -0.0293556j; -0.0862983 +
0.0483206j; -0.0657101 + -0.0154747j; -0.0241742 + 0.00185581j; -0.0304487 + -0.0230262j;
-0.0317125 + 0.0199536j; -0.00206234 + 0.211811j;
PPDU octect 85: 0.158255 + -0.0242892j; 0.141453 + -0.118609j; -0.146111 + 0.0575272j; -
0.155152 + 0.0833329j; -0.0015876 + -0.0295499j; 0.018425 + -0.129305j; 0.012172 + -
0.0180522j; -0.0083002 + -0.0371899j;
PPDU octect 86: 0.03125 + 0.0395285j; 0.0234214 + 0.0965821j; 0.0135822 + -0.0392045j;
0.0498857 + 0.0189327j; -0.0722289 + -0.140631j; -0.0228469 + -0.0508914j; 0.0237545 +
0.0991738j; -0.127134 + -0.116193j;
PPDU octect 87: 0.0941663 + 0.102353j; 0.182928 + 0.0982142j; -0.0399674 + -0.0195794j;
0.0646191 + 0.077456j; 0.0875343 + -0.146564j; -0.038809 + -0.0585788j; -0.0565902 +
0.124412j; -0.0767586 + 0.0199933j;
PPDU octect 88: 0.0296464 + -0.120189j; 0.0340277 + -0.142461j; 0.00366307 + -0.0123123j;
0.12597 + -0.0429729j; 0.0545228 + 0.0680213j; -0.0196314 + 0.0772427j; 0.00787072 + -
0.0556209j; -0.0343327 + 0.0461655j;
PPDU octect 89: -0.0396692 + -0.133825j; -0.056498 + -0.131124j; 0.0143079 + 0.0966673j;
0.0448767 + -0.00858707j; -0.112614 + -0.17049j; -0.065255 + -0.229676j; 0.0651514 + -
0.0114664j; 0.011351 + 0.047573j;
PPDU octect 90: 0.0395285 + 0.0181606j; -0.00163598 + 0.0412795j; 0.00138841 +
0.0708434j; -0.0373389 + -0.116939j; -0.105664 + -0.0623j; 0.00181488 + 0.0568087j; -
0.0084312 + -0.0109701j; 0.0187883 + 0.0721539j;
PPDU octect 91: 0.0162325 + 0.0587311j; -0.0652257 + -0.0766981j; 0.141542 + -0.0617811j;
0.0869275 + 0.025459j; -0.00262285 + -0.102865j; 0.106662 + -0.151683j; -0.0544175 +
0.036349j; -0.0296711 + -0.00309548j;
PPDU octect 92: 0.0576891 + -0.0197642j; -0.0278851 + 0.0066721j; -0.027348 + -
0.0986786j; 0.0487899 + -0.0752348j; 0.174449 + 0.0308429j; 0.133943 + 0.155555j;
0.0604381 + 0.076652j; -0.0104721 + -0.0218301j;

104

PPDU octect 93: -0.0835819 + 0.04009j; -0.073946 + 0.0110531j; -0.163122 + 0.0540938j; -
0.0520085 + -0.00831897j; 0.0762527 + -0.0419279j; 0.0425213 + 0.100944j; 0.0576176 + -
0.0183252j; 0.00311136 + -0.0899109j;
PPDU octect 94: 0.0592927 + -0.0181606j; 0.0230726 + -0.0309362j; 0.00711971 + -
0.0172156j; 0.066082 + -0.016897j; -0.13531 + -0.0982117j; -0.0556543 + -0.0807799j;
0.0885568 + 0.154351j; 0.119511 + 0.122336j;
PPDU octect 95: 0.102353 + 0.000561578j; -0.141042 + 0.102104j; 0.0063104 + -0.0114042j;
0.0566463 + -0.0393582j; -0.0590676 + 0.065734j; 0.131893 + 0.111102j; 0.0119852 +
0.113766j; 0.0468643 + -0.105996j;
PPDU octect 96: 0.159718 + -0.0988212j; -0.076392 + 0.0844907j; -0.0486395 + 0.0730016j;
0.00507324 + -0.0861391j; -0.0520616 + -0.107502j; -0.0726498 + 0.128766j; -0.128986 + -
0.0339684j; -0.15277 + -0.11095j;
PPDU octect 97: -0.193117 + 0.0982596j; -0.107315 + -0.0684993j; 0.00369191 + -
0.00885941j; -0.0392129 + 0.0243554j; -0.0540907 + -0.0790553j; 0.023725 + 0.0841624j;
0.052294 + -0.00162637j; 0.0277925 + -0.0439759j;
PPDU octect 98: 0.0395285 + 0.0181606j; -0.00163598 + 0.0412795j; 0.00138841 +
0.0708434j; -0.0373389 + -0.116939j; -0.105664 + -0.0623j; 0.00181488 + 0.0568087j; -
0.0084312 + -0.0109701j; 0.0187883 + 0.0721539j;
PPDU octect 99: 0.0162325 + 0.0587311j; -0.0652257 + -0.0766981j; 0.141542 + -0.0617811j;
0.0869275 + 0.025459j; -0.00262285 + -0.102865j; 0.106662 + -0.151683j; -0.0544175 +
0.036349j; -0.0296711 + -0.00309548j;
PPDU octect 100: 0.0197642 + -0.159718j; 0.0290886 + 0.0252547j; 0.0861483 + -0.0288349j;
0.0867942 + -0.0815142j; 0.00345816 + -0.0359947j; -0.0960365 + -0.0885953j; -0.0729433 +
-0.0459031j; 0.105487 + -0.0196636j;
PPDU octect 101: 0.192621 + 0.0180038j; -0.0531459 + -0.073101j; -0.118339 + -0.148885j;
0.0191895 + -0.0190929j; -0.0417141 + 0.0263756j; 0.0405524 + 0.00882431j; 0.0284543 + -
0.0764756j; -0.0376039 + -0.0684193j;
PPDU octect 102: -0.0114858 + 0.00988212j; -0.133529 + -0.0644879j; 0.0689293 + -
0.0671722j; 0.0570357 + 0.00630021j; -0.134364 + 0.0980107j; 0.152477 + 0.0360762j;
0.0412595 + -0.0845433j; -0.099111 + -0.0485833j;
PPDU octect 103: 0.089004 + -0.0994585j; -0.0459865 + 0.0181825j; -0.112344 + 0.135481j;
-0.0635739 + 0.0178506j; -0.0222531 + 0.0530081j; 0.0410498 + 0.0765494j; -0.0211672 +
0.144644j; 0.00665332 + 0.178782j;
PPDU octect 104: 0.0592927 + 0.0411321j; 0.0225525 + 0.0644587j; 0.0616463 + 0.0217485j;
0.110484 + -0.0806779j; -0.016029 + -0.0536466j; -0.0138699 + -0.0174774j; 0.171277 +
0.00807664j; 0.0701664 + -0.026787j;
PPDU octect 105: -0.0147426 + 0.00176044j; -0.0124264 + 0.0529065j; -0.125061 +
0.00871965j; -0.039783 + 0.0123833j; 0.0359253 + 0.114372j; 0.00701687 + 0.0898629j; -
0.0158081 + -0.0822487j; -0.00846144 + -0.0129339j;
PPDU octect 106: 0.0905427 + 0.0296463j; 0.0723212 + -0.0683032j; 0.0512069 + 0.0626811j;
-0.0042373 + 0.0486363j; -0.129764 + -0.0478978j; -0.120922 + 0.0614277j; -0.0952694 +
0.0780457j; 0.0106693 + 0.00456515j;
PPDU octect 107: 0.0493456 + 0.000637334j; -0.0138327 + -0.0108121j; 0.00875645 + -
0.0627949j; -0.030951 + 0.0402129j; -0.0114865 + 0.00388678j; -0.0334234 + -0.110766j; -
0.11486 + 0.137461j; -0.0246448 + 0.0489417j;
PPDU octect 108: 0.0197642 + -0.159718j; 0.0290886 + 0.0252547j; 0.0861483 + -0.0288349j;
0.0867942 + -0.0815142j; 0.00345816 + -0.0359947j; -0.0960365 + -0.0885953j; -0.0729433 +
-0.0459031j; 0.105487 + -0.0196636j;
PPDU octect 109: 0.192621 + 0.0180038j; -0.0531459 + -0.073101j; -0.118339 + -0.148885j;
0.0191895 + -0.0190929j; -0.0417141 + 0.0263756j; 0.0405524 + 0.00882431j; 0.0284543 + -
0.0764756j; -0.0376039 + -0.0684193j;

Phew! It finally works

End of OSSIE simulation: 802.11a PPDU transmission

105

B. RECEIVER

Welcome to OSSIE simulation: 802.11a PPDU receiver

Start PPDU digitised receiver
stream_sizeI = 884, stream_sizeQ = 884
Removed preamble from PPDU samples
Preamble match at pointer: 4
Sent PPDU (preamble removed) samples
PPDU_preamble_removed data, Length 560

Start PPDU Header remove function

Complex float pushpacket received, length 560
Sent SIG time samples for processing ...
Header removed data output, Length 80

Start SIG_cyclicPrefix_rem function

Complex float pushpacket received, length 80
Processing SIG cyclic prefix remove
SIG_cyclicPrefix_rem Tx data, Length 64

Start SIG_FFT function

Complex float pushpacket received, length 64
Processing SIG FFT
FFT frequency output (Magnitude), Length 64
SIG_FFT Tx data, Length 64

Start SIG_carriers_demap function

Complex float pushpacket received, length 64
Processing carrier demapping
SIG carriers demapped data, Length 48

Start SIG_demodulation function

Complex float pushpacket received, length 48
Processing SIG BPSK demodulation
SIG demodulated data, Length 48

Start SIG_deinterleaver function

Real short pushpacket received, length 48
Processing SIG deinterleaver, size: 48
SIG deinterleaved Tx data, Length 48

Start SIG convolution decoding function

Real short pushpacket received, length 48
Processing SIG convolution decoding, size: 48
We are inside initialise_viterbi
Nstate = 64; Nsr = 6
return from initialise viterbi
We are inside process_viterbi
No. of iterations: 24
return from process viterbi
End of decoding
SIG decoded Tx data, Length 24

SIG header information received

Real short pushpacket received, length 24
Processing Data sequence, rate: 36 Mbit/s, length: 100 octets
Send raw data for decoding
Header removed data output, Length 485

Start Data recovery function

106

Complex float pushpacket received, length 485
Sent raw data for processing ...
Data output, Length 485

Start Data_cyclicPrefix_rem function

Complex float pushpacket received, length 485
Processing Data cyclic prefix remove
Data_cyclicPrefix_rem Tx data, Length 389

Start Data_FFT function

Complex float pushpacket received, length 389
Processing Data FFT
FFT frequency output (Magnitude), Length 384
Data_FFT Tx data, Length 389

Start Data_carriers_demap function

Complex float pushpacket received, length 389
Processing data carrier demapping
Data carriers demapped data, Length 293

Start Data_demodulation function

Complex float pushpacket received, length 293
Processing Data demodulation
Conduct 16QAM demodulation
Data demodulated data, Length 1157

Start Data_deinterleaver function

Real short pushpacket received, length 1157
Processing Data deinterleaver
Data deinterleaved Tx data, Length 1157

Start Data convolution decoding function

Real short pushpacket received, length 1157
Processing Data convolution decoding
Recover the punctured encoded Data, size: 1152
We are inside initialise_viterbi
Nstate = 64; Nsr = 6
return from initialise viterbi
We are inside process_viterbi
No. of iterations: 144
We are inside process_viterbi
No. of iterations: 144
We are inside process_viterbi
No. of iterations: 144
We are inside process_viterbi
No. of iterations: 144
We are inside process_viterbi
No. of iterations: 144
We are inside process_viterbi
No. of iterations: 144
return from process viterbi
End of decoding
Data decoded Tx data, Length 869

Start Data_descrambler function

Real short pushpacket received, length 869
Processing data in the descrambler
Descrambled data Bits, Length 864

Decoded Data received

Real short pushpacket received, length 864
Send PSDU data to MAC layer ...
PSDU Data output, Length 801

107

Start Data_PSDU display function

Real short pushpacket received, length 801
Start PSDU display ...
Received data successfully decoded:
Received octet data [0]: 04
Received octet data [1]: 02
Received octet data [2]: 00
Received octet data [3]: 2e
Received octet data [4]: 00
Received octet data [5]: 60
Received octet data [6]: 08
Received octet data [7]: cd
Received octet data [8]: 37
Received octet data [9]: a6
Received octet data [10]: 00
Received octet data [11]: 20
Received octet data [12]: d6
Received octet data [13]: 01
Received octet data [14]: 3c
Received octet data [15]: f1
Received octet data [16]: ef
Received octet data [17]: 7a
Received octet data [18]: 51
Received octet data [19]: 92
Received octet data [20]: 3b
Received octet data [21]: af
Received octet data [22]: 00
Received octet data [23]: 00
Received octet data [24]: 4a
Received octet data [25]: 6f
Received octet data [26]: 79
Received octet data [27]: 2c
Received octet data [28]: 20
Received octet data [29]: 62
Received octet data [30]: 72
Received octet data [31]: 69
Received octet data [32]: 67
Received octet data [33]: 68
Received octet data [34]: a3
Received octet data [35]: 2f
Received octet data [36]: 73
Received octet data [37]: 70
Received octet data [38]: 61
Received octet data [39]: 72
Received octet data [40]: 6b
Received octet data [41]: 20
Received octet data [42]: 6f
Received octet data [43]: 66
Received octet data [44]: 20
Received octet data [45]: 64
Received octet data [46]: 69
Received octet data [47]: 76
Received octet data [48]: 69
Received octet data [49]: 6e
Received octet data [50]: 69
Received octet data [51]: 74
Received octet data [52]: 83
Received octet data [53]: 2d
Received octet data [54]: 0a
Received octet data [55]: 44
Received octet data [56]: 61
Received octet data [57]: 75
Received octet data [58]: 67
Received octet data [59]: 68
Received octet data [60]: 74
Received octet data [61]: 65
Received octet data [62]: 72
Received octet data [63]: 20
Received octet data [64]: 6f

108

Received octet data [65]: 66
Received octet data [66]: 20
Received octet data [67]: 45
Received octet data [68]: 6c
Received octet data [69]: 79
Received octet data [70]: 72
Received octet data [71]: 69
Received octet data [72]: 75
Received octet data [73]: 6d
Received octet data [74]: 2c
Received octet data [75]: 0a
Received octet data [76]: 46
Received octet data [77]: 69
Received octet data [78]: 72
Received octet data [79]: 65
Received octet data [80]: 2d
Received octet data [81]: 69
Received octet data [82]: 6e
Received octet data [83]: 73
Received octet data [84]: 69
Received octet data [85]: 72
Received octet data [86]: 65
Received octet data [87]: 64
Received octet data [88]: 20
Received octet data [89]: 77
Received octet data [90]: 65
Received octet data [91]: 20
Received octet data [92]: 74
Received octet data [93]: 72
Received octet data [94]: 65
Received octet data [95]: 61
Received octet data [96]: da
Received octet data [97]: 57
Received octet data [98]: 99
Received octet data [99]: ed

Phew! It finally works

End of OSSIE simulation: 802.11a PPDU receiver

109

APPENDIX D: IEEE 802.11A TEST SEQUENTIAL FLOW CHART

A. TRANSMITTER

 IEEE 802.11a Transmitter components sequential flow Example (802.11a Annex G)
 Components Description Data In Type In Data Out Type Out Data size in Data size out

1 preamble_map
 - initiate the tx routine
 - start ST sequence processing - - complex integer - 52

2 ST_carrier_map - ST carrier mapping complex integer complex float 52 64
3 ST_IFFT - ST IFFT complex float complex float 64 160

4 preamble_map
 - receive ST samples
 - start LT sequence processing complex float complex integer 160 52

5 LT_carrier_map - LT carrier mapping complex integer complex float 52 64
6 LT_IFFT - LT IFFT complex float complex float 64 128
7 LT_cyclicPrefix - LT cyclic prefix append complex float complex float 128 160

8 preamble_map

 - receive LT samples
 - send preamble (ST + LT) to
PPDU complex float complex float 160 320

9 PPDU_map
 - receive preamble
 - send CB to start SIG processing complex float real integer 320 8

10 header_map
 - receive RATE & LENGTH
 - send raw SIG for processing real integer real integer 8 24

11 SIG_conv_enc - SIG convolution encoding real integer real integer 24 48
12 SIG_interleaver - SIG interleaving real integer real integer 48 48
13 SIG_BPSK_mod - SIG BPSK modulation real integer complex float 48 48
14 SIG_carriers_map - SIG carriers mapping complex float complex float 48 64
15 SIG_IFFT - SIG IFFT complex float complex float 64 64
16 SIG_cyclicprefix - SIG cyclic prefix complex float complex float 64 80

110

 IEEE 802.11a Transmitter components sequential flow Example (802.11a Annex G)
 Components Description Data In Type In Data Out Type Out Data size in Data size out

17 header_map
 - receive SIG samples
 - send SIG to PPDU complex float complex float 80 96

18 PPDU_map
 - receive SIG samples
 - send CB to start data processing complex float real integer 96 24

19 data_map

 - receive RATE & LENGTH
 - send CB to start PSDU
processing real integer real integer 24 24

20 data_PSDU - input PSDU data real integer real integer 24 800

21 data_map

 - receive PSDU data
 - send CB to start PSDU
processing real integer real integer 800 869

22 data_scrambler - scrambler the raw data real integer real integer 869 869
23 data_tail_replacement - replace tail with zeroes real integer real integer 869 869

24 data_conv_enc
 - data convolution encoding
 - data puncturing real integer real integer 869 1157

25 data_interleaver - data interleaving real integer real integer 1157 1157
26 data_mod_map - data modulation mapping real integer complex float 1157 293
27 data_carriers_map - data carriers mapping complex float complex float 293 385

28 data_IFFT - data IFFT complex float complex float 385 385
29 data_cyclicprefix - data cyclic prefix complex float complex float 385 480

30 data_map
 - receive time data samples
 - send time data samples to PPDU complex float complex float 480 480

31 PPDU_map

 - receive time data samples
 - form PPDU packet for
transmission complex float complex float 480 880

111

B. RECEIVER

 IEEE 802.11a Receiver components sequential flow Example (802.11a Annex G)
 Components Description Data In Type In Data Out Type Out Data size in Data size out

1 Rx_data - received digitised data stream - - complex float - continuous

2 PPDU_rx

 - extract the required digitised
PPDU stream
 - removed preamble from PPDU
 - send stream for header removal complex float complex float continuous 560

3 Header_rx
 - removed header from PPDU
 - send header for processing complex float complex float 560 80

4 SIG_cyclicprefix_rem - SIG cyclic prefix removal complex float complex float 80 64
5 SIG_FFT - SIG FFT complex float complex float 64 64
6 SIG_carriers_demap - SIG carriers demapping complex float complex float 64 48
7 SIG_BPSK_demod - SIG BPSK demodulation complex float real integer 48 48
8 SIG_deinterleaver - SIG deinterleaving real integer real integer 48 48
9 SIG_conv_dec - SIG convolution decoding real integer real integer 48 24

10 Header_rx

 - extract RATE & LENGTH from
SIG
 - send received data for
processing real integer complex float 24 485

11 data_rx
 - receive and send raw data for
processing complex float complex float 485 485

12 data_cyclicprefix_rem - data cyclic prefix removal complex float complex float 485 389

13 data_FFT - data FFT complex float complex float 389 389
14 data_carriers_demap - data carriers demapping complex float complex float 389 293
15 data_demod_map - data demodulation mapping complex float real integer 293 1157
16 data_deinterleaver - data deinterleaving real integer real integer 1157 1157

11
2

IE

E
E

 8
02

.1
1a

 R
ec

ei
ve

r
co

m
po

ne
nt

s
se

qu
en

tia
l f

lo
w

E

xa
m

pl
e

(8
02

.1
1a

 A
nn

ex
 G

)

C
om

po
ne

nt
s

D
es

cr
ip

tio
n

D
at

a
In

Ty

pe
 In

D

at
a

O
ut

 T
yp

e
O

ut
 D

at
a

si
ze

 in

D
at

a
si

ze
 o

ut

17
 d

at
a_

co
nv

_d
ec

 -

da
ta

 d
e-

pu
nc

tu
rin

g
 -

da
ta

 c
on

vo
lu

tio
n

de
co

di
ng

re

al

in
te

ge
r

re
al

in

te
ge

r
11

57

86
9

18
 d

at
a_

de
sc

ra
m

bl
er

 -

de
sc

ra
m

bl
er

 th
e

ra
w

 d
at

a
re

al

in
te

ge
r

re
al

in

te
ge

r
86

9
86

4

19
 d

at
a_

rx

 -
re

ce
iv

e
an

d
se

nd
 P

P
D

U
 d

at
a

to

M
A

C
 la

ye
r

re
al

in

te
ge

r
re

al

in
te

ge
r

86
4

80
1

20
 d

at
a_

rx
_P

S
D

U
_d

is
pl

ay

 -
di

sp
la

y
th

e
PS

D
U

 re
ce

iv
ed

 b
its

re

al

in
te

ge
r

 -
 -

80
1

113

LIST OF REFERENCES

[1] “Definition of Iterative and Incremental development, Wikipedia”.

http://en.wikipedia.org/wiki/Iterative_and_incremental_development last accessed on Oct

2006.

[2] J. H. Reed, “Software Radio: A Modern Approach to Radio Engineering”, 1st ed.

New Jersey: Prentice Hall, 2002.

[3] IEEE Std 802.11a-1999 (Revision 2003), “Part 11: Wireless LAN Medium

Access Control (MAC) and Physical Layer (PHY) specifications, high-speed physical

layer in the 5 GHz Band”.

[4] Matthew S. Gast, “802.11 Wireless Networks – The Definitive Guide”, Chapter

11: 802.11a - 5GHz OFDM PHY, O’Reilly, 2002.

[5] Jacob A. DePriest, “A Practical Approach to Rapid Prototyping of SCA

Waveforms” thesis, Virginia Polytechnic Institute and State University, 2006.

[6] Hiroshi Harada & Ramjee Prasad, “Simulation and software radio for mobile

communications”, Chapter 4: OFDM Transmission Technology, Boston: Artech House,

2002.

[7] C. Britton Rorabaugh, “Simulating Wireless Communication Systems: Practical

Models in C++”, New Jersey: Prentice Hall PTR, 2004.

[8] S.M. Shajedul Hasan, “A Software Defined Radio Receiver based on USRP and

OSSIE Framework” Course Project - ECE 5674: Software Radios, Virginia Polytechnic

Institute and State University, 2006.

114

THIS PAGE INTENTIONALLY LEFT BLANK

115

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Professor Jeffrey B. Knorr
 Chairman, Code EC

Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA

4. Asstistant Professor Frank Kragh, Code EC/Kh
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA

5. Professor R. Clark Robertson, Code EC/Rc
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA

6. Professor Carl Deitrich

Virginia Polytechnic Institute and State University
Blacksburg, VA

7. Professor Jeffrey H. Reed
 Virginia Polytechnic Institute and State University

Blacksburg, VA

8. Professor Charles W. Bostian
 Virginia Polytechnic Institute and State University

Blacksburg, VA

9. Mr. Howard Pace

JTRS, JPEO
 San Diego, CA

10. Dr. Richard North

JTRS, JPEO
 San Diego, CA

116

11. Ms. Donna Miller
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA

12. Mr. Nathan Beltz

SPAWAR Systems Center
San Diego, CA

